Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Система мышьяк—селен—висмут

    В различной степени проявляется металлизация химических связей в системах мышьяк—селен—висмут и мышьяк—селен— теллур. В этих трехкомпонентных системах два компонента являются элементами одной и той же группы периодической системы. При введении в систему мышьяк—селен аналога мышьяка—висмута вследствие нарастания степени металлизации химических связей получена очень небольшая область стеклообразования (рис. 14) [21]. При введении в селениды мышьяка [c.14]


    Система мышьяк—селен —висмут [c.90]

    Гомоцепные полимеры будут рассмотрены в том порядке, в каком находятся в периодической системе составляющие их элементы. Насколько можно судить но имеющимся литературным данным, снособностью образовывать гомоцепные полимеры отличаются следующие элементы бор, углерод, кремний, германий, олово, фосфор, мышьяк, сурьма, висмут, сера, селен и теллур. [c.328]

    Области стеклообразования в системах мышьяк— германий— -селен, сурьма— германий—селен и висмут—германий—селен последовательно уменьшаются. Особенно резкое снижение способности к стеклообразованию наблюдается при замене германия на олово и свинец (рис. 13). [c.13]

    В присутствии цеолитов в поливалентной катионной и аммонийной форме с диаметром эффективных полостей 6—15 А подвергали реакции трансалкилирования смесь ароматических углеводородов, содержавшую С и толуол 137]. В качестве матрицы использовали окись алюминия (20 вес.%). Катализаторы содержали от 0,05 до 5 вес.% металлов VHI группы периодической системы элементов. Для усиления селективности действия катализатора вводили мышьяк, сурьму, висмут, селен, теллур или их комбинацию. Например, применяли декатионированный цеолит типа Y (или морденит), содержащий платину и мышьяк (на 1 атом платины 0,4 атома мышьяка). Реакция может протекать в газовой или жидкой фазе в среде смеси толуола и 1,2,4-триметилбензола при 450—500 °С, 35 кгс/см , отношении На углеводороды 8—10 1, объемной скорости 2 ч" . Анализ полученных продуктов указывал на происходящий процесс трансалкилирования, сопровождающийся высоким выходом ксилола, и на отсутствие неароматических углеводородов. [c.127]

    Итак, большая группа элементов, расположенных преимущественно в верхней средней части Периодической системы Д. И. Менделеева в главных подгруппах, может быть определена как полп-меры. Это бор, углерод, кремний, фосфор, сера, германий, мышьяк, селен, олово, сурьма, теллур, висмут и полоний [3, 54, 55]. [c.27]

    Теплопроводность чистых элементов зависит от их положения в периодической системе элементов. Элементы с низкой валентностью и с выраженными металлическими свойствами обладают повышенной теплопроводностью (например, металлы I и И группы). Лучшие проводники теплоты и электричества — элементы, атомы которых имеют во внешней оболочке не более двух электронов, а худшие — имеющие пять внешних электронов (мышьяк, сурьма и висмут). Полупроводниками будут селен и теллур, имеющие, по б внешних электронов. [c.337]

    Способность образовывать полимерные молекулы достаточно ясно выражена у таких элементов, как бор, углерод, кремний, фосфор, сера, мышьяк, германий, селен, сурьма, висмут и теллур. Среди всех элементов периодической системы углерод выделяется своей уникальной способностью образовывать необычайно длинные цепи карбоцепных полимеров, остальные перечисленные выше элементы обладают этой способностью в значительно меньшей степени. Способиость образовывать достаточно прочные гомоцепные полимеры зависит от прочности связей атомов данного элемента друг с другом. [c.325]


    Так как атом стремится дополнить свою электронную оболочку до оболочки ближайшего благородного газа, то неметаллы кристаллизуются так, чтобы число соседей равнялось 8—Ы, где N номер группы Периодической системы, к которой принадлежит данный элемент. Так, селен и теллур (группа VI) образуют кристаллические структуры со спиральными цепочками, где координационное число равно двум, а в структурах мышьяка, сурьмы и висмута (группа V) координационное число равно трем. [c.325]

    Летучие соединения элементов в особо чистом состоянии все шире применяются для получения чистых металлов и полупроводниковых слоев. Наиболее широким классом соединений в этом плане могут быть летучие хлориды элементов 1И—VI групп периодической системы трихлориды бора, алюминия, галлия, фосфора, мышьяка, сурьмы и висмута, тетрахлориды углерода, кремния, германия, олова, титана, циркония, гафния, ванадия и теллура, пентахлориды ниобия, тантала и молибдена, гексахлорид вольфрама, хлористые сера и селен. Эти вещества имеют молекулярную кристаллическую структуру и, как следствие этого, низкие температуры кипения и плавления. Многие из перечисленных хлоридов служат исходными продуктами для получения элементов особой чистоты — бора [1], кремния 12—4], германия [5—7], циркония и гафния [8, 9], мышьяка [10] и др. Особо чистые хлориды имеют также и самостоятельное значение [11, 12] как катализаторы некоторых химических процессов. [c.33]

    Способность образовывать полимерные молекулы достаточно ясно выражена у таких элементов, как бор, углерод, кремний, фосфор, сера, мышьяк, германий, селен, сурьма, висмут и теллур. Среди всех элементов периодической системы углерод выделяется своей исключительной способностью образовывать необычайно длинные цепи карбоцепных полимеров, остальные перечисленные элементы обладают этой способностью в значительно меньшей степени. [c.8]

    Результаты измерения плотности, микротвердости и температурной зависимости электропроводности стеклообразных сплавов системы мышьяк—селен—висмут представлены в табл. 31 [136]. Плотности стеклообразных сплавов повышаются по мере увеличения содержания висмута в них. Микротвердость практически не изменяется по сравнению с микротвердостью исходных селенидов мышьяка. Проводимость при введении висмута в стеклообразные селениды мышьяка повышается, энергия активации электропроводности соответственно снижается. Однако влияние висмута на электрические свойства селенидов мышьяка сравнительно невелико. Максимальное повышение проводимости наблюдается при добавлении висмута к стеклообразному АзЗез/г (составы № 4 и 8). Энергия активации электропроводности при этом понижается на 0,2 эв. [c.90]

    При электролитическом наводороживании и травлении важную роль играют катализаторы, препятствующие процессу рекомбинации и моллизации ионов водорода. К ним относится ряд элементов V и VI групп периодической системы (фосфор, сера, мышьяк, селен, теллур, висмут). Добавление этих элементов или их соединений в раствор электролита в небольших концентрациях (порядка от 0,01 до 10 мг/л) замедляет рекомбинацию ионов, благодаря чему создаются условия для проникновения водорода внутрь металла. [c.25]

    Вторым фактором, затрудняющим стеклообразование в халькогенидных системах, является металлизация химических связей, увеличивающаяся сверху вниз в группах периодической системы. Металлизация проявляется, в частности, в делокализа-ции связей, строго направленных в случае ковалентных связей. Делокализация связей в пространстве сопровождается размыванием волновых функций, вследствие чего облегчается перераспределение компонентов стекла в критической области температур и увеличивается способность расплавов к кристаллизации. Так, в бинарных системах мышьяк—сера и мышьяк—селен, для которых получены большие области, стеклообразования, степень металлизации химических связей невелика. Резкое изменение характера связи наблюдается при переходе к теллу-ридам мышьяка. Вследствие нарастающей делокализации связей способность теллуридов мышьяка к стеклообразованию резко снижается. В системе мышьяк—теллур лишь в режиме жесткой закалки в стеклообразном состоянии получены сплавы двух составов — АзТе и ЛзТео.з и при самой жесткой закалке — АзгТез [18]. При замещении мышьяка на Сурьму и висмут в стеклообразном сплаве Аз Зез, применяя жесткую закалку расплавов, можно получить стекло состава АзЗЬЗез. Замена более 50 ат. % мышьяка на сурьму сопровождается кристаллизацией стекла. На висмут в стеклообразном сплаве АзгЗез мышьяк можно заместить лишь на 5 ат. % [19]. [c.12]

    В системе мышьяк—германий—селен связь между атомами практически гомеополярная. В силу этого при взаимодействии компонентов в этой системе получена большая область стеклообразования. При замене мышьяка на сурьму и висмут в этой трехкомпонентной системе вследствие нарастания степени металлизации ковалентных химических связей в ряду Аз->8Ь- В1 область стеклообразования резко сокращается. Можно было ожидать, что металлизация химических связей, усиливающаяся в ряду Аз->-8Ь->В1, будет оказывать влияние и на физико-химические, и в первую очередь электрические, свойства стекол указанных систем. В бинарных селенидах при замене мышьяка на сурьму и висмут действительно наблюдается последовательное повышение проводимости при соответствующем снижении энергии активации электропроводности. [c.145]


    Летучие органические вещества или вещества, содержащие фосфор, мышьяк, сурьму, висмут, селен, бор, ртуть и другие элементы, полностью или частично улетучивающиеся при прокаливании в открытых тиглях или при мокром разложении, необходимо разлагать в замкнутой системе. Вместо применявшегося ранее разложения исследуемого вещества азотной кислотой в запаянной трубке по методу Кариуса теперь во многих случаях успешно применяют очень быстрый и дешевый способ разложения в универсальной бомбе по способу Вурцшмитта (стр. 50), Соединения ртути и других элементов, реагирующих с никедем при температуре воспламенения смеси в бомбе, разлагают, как и прежде, в стеклянной трубке. [c.94]

    Катионы 4-й аналитической группы осаждаются сероводородом в кислой среде при pH 0,5. Ее составляют элементы IV главной подгруппы (олово, свинец), V главной подгруппы (мышьяк, сурьма и висмут), VI группы периодической системы (молибден, вольфрам, селен, теллур), VII побочной подгруппы (технеций, рений), VIII группы семейств рутения и осмия. В 4 аналитическую группу входят также медь, серебро и золото, как элементы 1 побочной подгруппы таблицы Менделеева. 4 аналитическая группа подразделяется на три подгруппы подгруппу соляной кислоты, подгруппу сульфооснований и подгруппу сульфоангидридов. [c.31]

    Следует остановиться еще на одном гибридном атомизаторе системе проволочное кольцо — пламя. Кольцо диаметром 4 мм из платиновой проволоки диаметром 0,5 мм установлено в керамическом держателе с электрическими контактами. К кольцу подводят электроэнергию с напряжением до 2,5 В, силой тока до 20 А. На кольцо наносят 1—40 мкл анализируемого раствора и сушат электронагревателем. Для сушки 40 мкл водного раствора требуется 2 мин. При ускорении сушки возможны потери определяемых элементов. После сушки кольцо быстро вводят в пламя и включают электронагрев на полную мощность. За время меньше 1 с температура кольца повышается до 1250°С, и происходит атомизация пробы в пламени. Записывают пик абсорбционного сигнала. Для получения ацетилено-воздушного пламени используют горелку со щелью длиной 8 мм и шириной 0,5 мм. Для введения кольца в пламя сконструировано электромагнитное устройство, которое одновременно включает электропитание кольца для атомизации, С одним платиновым кольцом можно сделать свыше 1000 определений. При испарении 40 мкл раствора достигнуты следующие пределы обнаружения (в мкг/мл) кадмий — 0,25, мышьяк—1,5, свинец — 4, сурьма—10 при испарении 10 мкл цинк—1, висмут — 20, теллур — 30, селен — 60, ртуть — 100. Щелочные и щелочноземельные металлы определяют по эмиссионным спектрам. Предел обнаружения (в нг/мл) при испарении 10 мкл раствора составляет литий — 0,06, натрий и стронций—10, цезий — 80, барий — 90, калий — 1000 [98]. [c.58]

    В этом приборе (А-Аналист 800) — двухлучевая оптическая схема с дейтериевым корректором и встроенный компьютерноконтролируемый графитовый атомизатор (для испарения пробы при температуре 3000°С). Предусмотрен полный компьютерный контроль спектрометра и всех систем и приставок, а также возможность присоединения графитовой печи с проточно-инжек-ционной системой, позволяющей анализировать элементы в виде гидридов и в 100 раз снизить Си для таких важных приоритетных загрязнителей окружающей среды, как ртуть, мышьяк, сурьма, селен, теллур, висмут и олово. [c.239]

    Как было показано ранее, у бинарных халькогенидных стекол, полученных при сочетании Элементов V и VI групп периодической системы, при замене фосфора на мышьяк, сурьму и висмут, серы на селен и теллур наблюдается последовательное повышение проводимости. Энергия активации электропроводности при этом соответственно снижается. Наиболее резкое повышение проводимости наблюдается при переходе от селена к теллуру. Проводимость повышается более чем на 7 порядков, энергия активации электропроводности снижается с 1,7 до 0,8 эв при переходе от АзгЗез к АзаТез. [c.127]

    Действительно, в ряду щелочных металлов литий не следует за натрием, а оказывается между кальцием и магнием. За щелочноземельными металлами следует не магний, а литий, бериллий же находится почти в конце ряда, вблизи алюминия. Рений, осмий, иридий, платина оказываются более электроположительными, чем технеций, рутений, родий, палладий, а марганец, железо, кобальт, никель— более электроотрицательными. Между таллием и индием оказывается свинец, а бор смещается к гораздо более отрицательным элементам, занимая место между кремнием и полонием. В IV группе между свинцом, оловом и германием, кремнием располагаются пять элементов II, III и V групп, а углерод сдвигается к еще более электроотрицательным элементам, располагаясь между фосфором и водородом. В V группе висмут, сурьма отделены от своих аналогов — мышьяка и фосфора — пятью элементами, а азот располагается еще на семь элементов правее. Между полонием, теллуром (VI группа) и селеном, серой располагаются шесть элементов, а кислород отделен от последних тремя элементами. Так же разорван и ряд галогенов. Следовательно, расположение элементов в порядке уменьшения электроноложительности, хотя и связано с их расположением в периодической системе, но осложнено немонотонным изменением этого свойства в подгруппах элементов-аналогов. [c.119]


Смотреть страницы где упоминается термин Система мышьяк—селен—висмут: [c.14]    [c.137]    [c.662]    [c.13]    [c.125]    [c.70]    [c.125]   
Смотреть главы в:

Химия стеклообразных полупроводников -> Система мышьяк—селен—висмут




ПОИСК







© 2025 chem21.info Реклама на сайте