Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катагенез

    Большое внимание в последнее время уделяется стеранам, терпанам, гопанам как биологическим индикаторам. Так, В. Зейферт [35] отмечает, что нефти разного возраста содержат разное количество стеранов и тритерпанов, которые коррелируются с ОВ нефтематеринских пород. Однако в последнее время появилась информация о том, что эти УВ (их количество и соотношение) являются индикатором зрелости (степени катагенеза) ОВ и нефтей, а также могут изменяться при бактериальном окислении нефтей. Отмечалось, что даже такой сильный индикатор генетической связи, как стеран С30. претерпевает значительные изменения при катагенезе и гипергенезе [34]. [c.39]


    Однако при геохимических исследованиях нефтей, которые лежат в основе прогнозирования состава углеводородных флюидов, наряду с генетической типизацией нефтей очень важна правильная оценка масштабов изменения нефтей при окислении, выветривании, при воздействии высокой температуры. Эта информация нужна прежде всего для прогнозирования состава нефтей в зонах гипергенеза, катагенеза и т. д. Многие исследователи этим процессам придавали главенствующее значение и даже называли различия нефтей, вызванные ими, генетическими. Очень важно, хотя подчас и трудно, выявить, с чем связаны различия изучаемых нефтей с их генетической неоднородностью или же с изменением их под влиянием вторичных факторов. Поэтому большое внимание в книге уделяется критериям генетической и геохимической классификации нефтей. [c.4]

    Как показали проведенные нами статистические исследования (анализ тесноты связи и уравнений регрессий) по изучению влияния условий залегания на состав нефтей разных генотипов, масштабы преобразования нефтей при процессах окисления, физического выветривания, катагенеза и миграции неодинаковы. Нефти разных генотипов могут существенно изменяться при одинаковых термобарических условиях. В связи с этим на одних и тех же глубинах нефти разных генотипов могут иметь разный состав. Последнее обстоятельство очень важно при прогнозировании типа [c.10]

    Все три классификации (химическая, генетическая и геохимическая) логически связаны между собой. В любом регионе нефти в первую очередь классифицируют по составу на химические типы, затем после детальных геохимических исследований определяют генетические типы нефтей, т. е. классифицируют их генетически. Для каждого генетического типа выделяют нефти разной геохимической истории и проводят геохимическую классификацию, которая основывается на изменениях свойств нефтей и основных показателей каждого генотипа с учетом воздействия на нефти процессов миграции, катагенеза или гипергенеза. Все эти сведения необходимы для прогнозирования типа и фазового состава углеводородных скоплений. [c.11]

    Преобразование биомассы в процессе диагенеза и дальнейшее изменение ОВ пород в катагенезе приводят к определенным изменениям в составе конечных продуктов по сравнению с первоначальными. [c.29]

    УВ в них и их эмиграции, состав ОВ и другие факторы влияют на количество генерированных и эмигрировавших УВ, поэтому подчас бывает трудно выявить генетические различия нефтей по количеству парафино-нафтеновых или нафтено-ароматических УВ. Эти различия более четко отмечаются по структуре УВ (см. рис. 2). В нефтях и ОВ пород в одноименных толщах наблюдаются близкие содержания парафиновых УВ и моноциклических нафтенов и почти идентичные — три-, тетра-, пента-и гексациклических нафтенов. Следует отметить, что содержание этих УВ в ОВ пород в каждой нефтематеринской толще независимо от глубины залегания, температуры и стадии катагенеза почти не меняется. [c.35]


    Выделению генетических типов нефтей в любом регионе, как правило, должны предшествовать региональные геохимические исследования, цель которых — выявление нефтей, сильно измененных в результате гипергенеза, катагенеза, дальней миграции и т. д. Такие нефти обычно исключаются из генетической классификации. [c.37]

    Нефти 1 — неизмененные, 2— измененные парафино-нафтеновая фракция 3 — неизмененная, 4 —измененная 5 —изменение содержания изотопа при гипергенезе, миграции и катагенезе нефтей, цифра — разница 5 С для нефти и парафино-нафтеновой фракции до и после их изменения, %о (—1 и (+) — увеличение доли изотопов соответственно и С. [c.125]

    Кроме того, причиной, осложняющей закономерно возрастающую метанизацию нефтей в зоне катагенеза с возрастанием глубины и температуры, является особенность структур УВ нефтей разных генетических типов. Нами были изучены нефти, залегающие на глубинах более 4 км, из 140 скважин из отложений плиоцена, эоцена, юры и девона месторождений Предкавказья, Азербайджана, Прикаспийской впадины и Белоруссии. Состав исследованных нефтей и конденсатов приведен в табл. 46, а его изменения показаны на рис. 24. Для глубокозалегающих нефтей характерно высокое содержание бензинов и парафино-нафтеновых УВ в отбензиненной нефти. Последние имеют низкую степень циклизации молекул и высокое содержание СН -групп в парафиновых цепях. Структура парафиновых цепей в парафино-нафтеновой фракции (соотношение количества СНг-групп в коротких и в длинных цепях, степень разветвленности цепей) с ужесточением термобарических условий меняется по-разному (рис. 25). В нефтях первой группы наблюдается сокращение доли длинных цепей и возрастание доли коротких, что может быть связано с деструкцией парафиновых цепей. Это ведет к увеличению содержания легких и газообразных УВ и образованию газоконденсатных залежей. Во второй группе нефтей с погружением возрастает относительная роль [c.139]

    В Прикаспийской впадине катагенные процессы очень мало повлияли на изменение нефтей, только 5,2 % от всех изученных нефтей претерпели небольшое влияние катагенеза. Значительно большее влияние катагенных процессов отмечалось нами для предгорных прогибов в Предкавказье, где на глубинах 4,7-5,6 км были встречены катагенно измененные нефти, главным образом VI ("юрского") генотипа. Масштабы и глубина преобразования нефтей в зоне катагенеза зависят, как показали наши исследования, не только от глубины и температуры недр, но и, как отмечалось выше, от "стойкости" углеродного скелета и от времени нахождения залежей нефти в условиях более высоких температур, чем во время [c.146]

    Позже Н.Б. Вассоевич (1954 г.), приняв в общем схему зонального деления, предложенную В.А. Соколовым, внес в нее значительные изменения. Биохимическую зону В.А. Соколова он выделил в качестве зоны диагенеза и сингенеза, а переходную зону, правда в несколько большем объеме, — в качестве зоны раннего катагенеза. При этом важно отметить, что Н.Б. Вассоевич первым указал на вероятность формирования уже в этой зоне небольших газовых залежей. Что касается двух нижних зон [c.5]

    Химическая типизация нефтей основана на установлении закономерностей относительного распределения углеводородов различных классов алканов, циклоалканов, аренов. Оно зависит от-условий формирования нефти в пластах залегания, т. е. от степени биодеградации, катагенеза, миграции и пр. [15]. [c.12]

    Генетическая типизация в соответствии с современными представлениями строится на основе изучения закономерностей состава и распределения в нефтях реликтовых углеводородов (хемофоссилий), унаследованных от материнского вещества нефтеобразования и незначительно изменившихся в процессах катагенеза и биодеградации. К этим веществам отнесены углеводороды высокомолекулярной части нефти - полициклические циклоалканы, арёны(пристан, фитан, стераны, гопаныидр.) [15]. [c.13]

    При рассмотрении структуры отдельных частиц асфальтенов следует учитывать их происхождение (нативные, подвергнутые термической деструкции), а также возраст нефти. Асфальтены, выделенные из остатков вакуумной перегонки, характеризуются меньшим содержанием водорода и более высоким содержанием гетероатомов, чем нативные. Нативные асфальтены, вьщеленные из молодых нефтей, характеризуются линейной надмолекулярной структурой, в которой связи между структурными блоками осуществляются метиленовыми цепочками [19]. Асфальтены более старых нефтей, прошедшие стадию глубокого катагенеза, имеют пачечную макроструктуру [25]. По этой модели (рис. 1.6) асфальтены ббразуют трехмерную структуру из ряда монослоев полициклических конденсированных аренов. Монослой (рис. 1.7) имеет М 800-3500, а образованная этими частицами слоистая структура М 5 500—5 900. Ассоциаты, образованные слоистыми частицами, могут иметь М 37 ООО-100 ООО. В настоящее время пйлучило всеобщее признание объяснение высоких значений молекулярной массы асфальтенов склонностью их к ассоциации с образованием коллоидных частиц различных размеров [23, 25]. [c.24]


    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    Ряд исследователей как генетические критерии используют данные об углеводородном составе бензиновой фракции. Так, В.А. Чахмахчев [33] использовал величины отношений изоалканы/н-алканы, гексацикла-ны/пентацикланы, бензол/толуол, цикланы/алканы, изопреноиды/м-ал-каны, а также содержание гемзамещенных алканов. Эти показатели имеют ряд ограничений, потому что они, как и вся бензиновая фракция, чутко реагируют на вторичные изменения — выветривание, окисление, биохимические изменения нефтей, миграцию, катагенез. [c.39]

    При прогнозировании состава нефтей особое внимание уделяется закономерностям его изменения в региональном плане и обязательно с учетом стратиграфической принадлежности нефтей. Закономерные изменения могут быть прежде всего связаны с региональной миграцией, о чем было сказано выше, с наличием зон гипергенеза и катагенеза. Выявление пространственного размещения этих зон, а также региональных закономерностей изменения параметров состава нефтей, в частности содержания бензиновой фракции, количества метановых и ароматических УВ в них, смолисто-асфальтеновых компонентов и других показателей, дает возможность сделать предположение о направлении региональной миграции, о возможном расположении зон генерации, наличие которых прогнозируется нами по палеотемпературным максимумам. [c.158]

    Информация о структуре парафиновых цепей, коэффициент Ц. Опыты по миграции УВ показали, что величина Ц мало меняется даже при фильтрации через плохо проницаемые породы. В условиях сильного окисления и в зоне катагенеза Ц может меняться, поэтому этот показатель не применим для генетической типизации сильноокисленных нефтей. [c.43]

    В качестве примера унаследованности нефтями подобных различий от ОВ можно привести данные о составе нефти и ОВ из межсолевых отложений (площадь Светлогорская). Нефти и ОВ близки по содержанию парафино-нафтеновых и нафтено-ароматических УВ в нефти соответственно 42—62 и 16—26 %, в ХБ — 58—69 и 10-22 %. Наибольшее сходство состава нефти и ХБ характерно для ОВ пород, залегающих на глубинах около 4 км на стадии катагенеза МК . [c.77]

    Нефти (цифры внутри фигур — номер месторождения или площади, рядом с фигурами — пластовая температура, °С) в — с признаками окисления (Опю < 1) б — окисленные Шпю >0,1), в — с признаками потери бензиновой фракции (бензина менее 15—20 %), г — потерявшие бензиновую фракцию (бензиновой фракции нет или менее 1 %), д — без признаков окисления или потери бензиновой фракции зоны е — идиогипергенеза ж — криптогипергенеза, з — катагенеза, и — условная граница геохимической зоны. [c.126]

    Как видно из приведенных данных, условия выделения зоны катагенеза даже в одном регионе не одинаковы. Один из основных факторов, приводящих к катагенным изменениям нефтей, по мнению большинства геохимиков, температура. Анализ геохимического материала по нефтям ряда регионов Советского Союза показал, однако, что закономерного возрастания метанизации нефти с увеличением современной температуры не наблюдается. Корреляционно-регрессивнный анализ состава нефти и условий ее залегания, в том числе и температуры, показал, что как в Предкавказье [11], так и в Прикаспии [5] в каждом стратиграфическом комплексе связь между составом нефти и современной температурой очень сложная. Для нефтей некоторых стратиграфичес1 их комплексов (например, юрские нефти Предкавказья) такая связь вообще отсутствует. Незначительная роль температуры отмечается и для нефтей, залегающих в нижнемеловых отложениях этого же региона, — изменение содержания метановых и ароматических У В зависит от глубины и минерализации вод. В кайнозойских отложениях роль температуры катагенных изменениях нефтей более заметна. Так, в палеоценовых отложениях отмечается связь между уменьшением степени циклизации молекул парафино-нафтеновых и нафтено-ароматических фракций с глубиной и температурой. Лишь в двух случаях отмечается непосредственное влияние температуры в нефтях, залегающих в эоценовых отложениях, число атомов углерода в ароматических кольцах уменьшается с ростом температуры (Уд = = 51,008 — 0,0845 Х ] в нефтях, залегающих в миоценовых отложениях, наблюдается возрастание содержания парафино-нафтеновых УВ с ростом температуры (Урн 34,456 + 0,263 Х ). В Прикаспийской впадине связь между составом нефти и температурой отмечалась только для триасовых нефтей уменьшалась с увеличением температуры (У/< = = 1,64-0,015 Xf). [c.138]

    Для оценки степени катагенного изменения нефтей разными исследователями предложены коэффициенты. Так, А.Ф. Добрянский предложил оценивать степень катагенеза нефти по формуле Ki = (МеВ)/100, где Kl — коэффициент метаморфизма Ме — содержание метановых УВ в бензиновой фракции, В - содержание бензиновой фракции, d - плотность нефти. Им же предложен и другой коэффициент — Кг = Ат/Ал, где Ат и Ал - содержание ароматических УВ во фракции выше 200 °С и в бензиновой фракции. И.С. Старобинец использовал для оценки степени метаморфизма (катагенеза) нефтей коэффициент (Н + А)/М, где Н, А, М — количество нафтеновых, ароматических и метановых УВ. A.A. Карцев оценивал степень катагенеза нефтей по геохронотерме, а Г.П. Курбский — по степени циклизации "высокомолекулярных парафино-цик-лопарафиновых У В" - К = K IK , где К и А" - количество атомов углерода соответственно в цепях и кольцах на молекулу, %. [c.143]

    К третьей группе относятся факторы, вызывающие изменения нефтей в процессе их существования в залежах в зоне гипергейева и катагенеза. ИК-спектры нефтей этих зон приведены на рис. 26. [c.144]

    На основании изучения природного материала и экспериментальных данных Г.И. Сафонова делает выводы о влиянии геологических условий на возможные преобразования реликтовых УВ. Количество н-ъ1 -канов в нефтях может меняться в зависимости от температурных условий, но качественный состав индивидуальных н-алканов, отражающий реликтовый характер этих УВ, сохраняется и согласуется с составом исходного ОВ. Под влиянием катагенеза уменьшается величина отношения суммы фитана и пристана к сумме низкомолекулярных изопреноидов (С12—С1в), для наиболее преобразованных нефтей она составляет 0,3-0,1, а для мало преобразованных — 2,5 и больше. Однако величина п/ф мало зависит от термобарических факторов. Этот же вывод сделан и В.В. Ильинской [8]. [c.144]

    Приведенные выше данные свидетельствуют о том, что современный облик нефти определяется влиянием многих факторов, контролируемых геологическими условиями на всех этапах возникновения, миграции, аккумуляции и существования нефти. На первых стадиях, когда закладываются основы генетического типа УВ, большее значение имеют фациально-климатические условия, на последующих — особенности тектонического развития региона. Однако следует отметить, что масштабы и особенности вторичных изменений нефтей, отраженные в основном в ее свойствах и компонентном составе, определяются ее генетическим типом. В одних и тех же условиях катагенеза или гипергенеза нефти разных генетических типов существенно отличаются друг от друга по индивидуальному составу, структуре УВ и изотопному составу серы и углерода. Генетические признаки нефтей ("генетический код") достаточно устойчивы и практически мало изменяются при вторичных изменениях нефтей. [c.148]

    В качестве факторов раздельного прогнозирования используются не только тип ОВ и стадии катагенеза ОВ, но и температура недр и давление и т. д. Температура несомненно влияет на изменение состава нефтей. Ряд ученых считают, что процессы термической деструкции нефтяных У В начинаются с температуры 150 °С, другие в качестве температурного предела, выше которого существование жидких УВ невозможно, принимают 200 °С. Так, С.И. Сергиенко и Г.Т. Юдин считают, что температура 150— 160 °С является границей перехода нефтяных залежей в газоконденсатные. На этот же температурный рубеж указывают Г.А. Амосов и др. [12] -Следует, однако, отметить, что в настоящее время имеются нефтяные залежи при температуре 204 °С. А.Н. Резников, А.В. Томкина, А.М. Бринд-зинский и др. прогнозируют тип углеводородных флюидов не только по температуре, но и по давлению. Раздельное прогнозирование нефтяных и газовых скоплений, в том числе и газоконденсатных залежей, может выполняться и с учетом принципа дифференциального улавливания. [c.150]

    Криптогипергенная зона распространяется в юрских отложениях до глубины примерно 2300 м, температура 28—50 °С в Гурьевском прогибе и на юго-востоке Прикаспийской впадины. Зона катагенеза приурочена к большим глубинам и температурам. В основном она распространена в пределах Прорвинско-Буранкольского прогиба. [c.173]

    Гипергенные и катагенные изменения нефтей определяются геологическими условиями их залегания. Уравнения регрессии, отражающие зависимости между параметрами, неодинаковы по набору параметров состава нефти и по тесноте связи с разными геологическими показателями для разных циклов. В зависимости от времени нахождения нефтей в зоне гипергенеза или в зоне катагенеза с температурой выше той, действие которой испытали материнские породы в палеотемпературной зоне активной генерации и эмиграции масштаб вторичных изменений нефтей будут разный. Отсюда вытекает необходимость для правильного прогнозирования состава нефти изучения ее палеотемпературной истории и количественно выраженной тесноты связи с геологическими условиями залегания. [c.183]

    Направленность в изменении состава органического материала от илов до древних пород подробно рассмотрена в работах многих геохимиков как в Советском Союзе, так и за рубежом (К.Ф. Родионова, С.П. Максимов, Е.С. Ларская, О.П. Четверикова, Ю.И. Корчагина и др., Дж. Хант, Б. Тиссо и др.). Показано, что в процессе диагенеза и катагенеза ОВ состав его изменяется. [c.191]

    В данном случае И. М. Губкин неудачно применил термин региональный метаморфизм . В других случаях тот же этан литогенеза он называл диагенезом (см. редакционное добавление (7]). На современном литостадиаль-яом языке этот этап именуется катагенезом (А. Е. Ферсман, Н. М. Страхов, Н. Б. Вассоевич и др.). [c.344]

    Для девонских залежей нефти и газа Саратовской области, расположенных в зоне среднего катагенеза, глинистые толщи служат хорошими покрышками. Встречаются залежи нефти и газа и в зоне позднего катагенеза (жирные и коксовые угли), там, где толщи аргиллитов имеют мощность 100—200 м (например, на Шляховской и Кудиповской площадях Волгоградской области). Однако залежи нефти отсутствуют в терригенном девоне Жирновского и Бахметьевского поднятий из-за воздействия динамометаморфизма на аргиллиты в своде этих поднятий. Они изменены здесь больше, чем в других районах Пижней Волги. [c.370]

    Длительный геохп.мпческий период , связанный с погружением" по-. род в более глубокие зоны с более высокой температурой и давлением, где образуется диффузно-рассеянная нефть. Отвечает катагенезу. [c.380]

    Н.Б. Вассоевич выделил их как одну зону - позднего катагенеза. Следует обратить внимание на предположение В.А. Соколова и Н.Б. Вассоевича о том, что УВ образуются в зоне катагенеза, т.е. в термокаталитической зоне, при деструкции ОВ, которая, по их мнению, начинается при очень низких температурах, характерных для глубин в осадке примерно 50 м. Температура на этих глубинах не может превышать 10 °С, а, как установлено, деструкция ОВ начинается при температуре 145 — 330 °С и при этом в условиях нормального давления. При давлении, которое характерно для отложений, залегающих даже на небольших глубинах — несколько кило-мс- ров, деструкция ОВ в результате термокаталитических процессов, ведущих к образованию УВГ, может происходить лишь при температуре значительно превышающей 500 С, т.е. при температуре, которая в осадочном чехле не встречается. [c.5]

    В дальнейшем Л.М. Зорькин (1969, 1973 гг.) определил зону раннего катагенеза Н-Ц.-Вассоевича как верхнюю газовую зону и показал, что к этой зоне приурочены крупные газовые залежи. Ниже он выделил нефтяную зону, а под ней — нижнюю газовую (см. рис. 1). Схема, предложенная Л.М. Зорькиным, основана на анализе газоносности подземной гидросферы и распределения нефтяных и газовых месторождений в ряде районов. Очень важно указать, что этот исследователь не счел возможным и необходимым выделенные им зоны отнести к каким-либо стадиям [c.6]


Смотреть страницы где упоминается термин Катагенез: [c.20]    [c.31]    [c.82]    [c.83]    [c.84]    [c.138]    [c.139]    [c.141]    [c.145]    [c.145]    [c.146]    [c.153]    [c.170]    [c.192]    [c.342]    [c.356]    [c.7]   
Геология и геохимия нефти и газа (1982) -- [ c.30 ]

Теоретические основы технологии горючих ископаемых (1990) -- [ c.22 , c.24 , c.26 , c.28 , c.38 ]




ПОИСК







© 2025 chem21.info Реклама на сайте