Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активные угли газового типа

    Из рассмотренных групп адсорбентов наиболее интересны представители первого структурного типа микропористые газовые активные угли и цеолиты. Активные угли обладают хорошо развитой переходной пористостью и сетью макропор, которые делают легко доступными для адсорбируемых молекул адсорбционный объем микропор внутренних частей зерен сорбента. Из газовых углей выделяется активный уголь СКТ с размером пор около 10 А и удельной поверхностью до 1500 м /г активный уголь СКТ отличается достаточной механической прочностью и быстротой регенерации. [c.27]


    Активный уголь СКТ-2 марки А применяется для адсорбции различных химических соединений из газовой и жидкой фаз в стационарном слое адсорбента, например для извлечения сероуглерода из паровоздушных смесей, а также в качестве основы для изготовления осушителей типа ОТ и ОЛ. Активный уголь СКТ-2 марки Б применяется для извлечения различных химических соединений из газов в кипящем слое сорбента. [c.174]

    Выбор метода регенерации адсорбента и его экономические показатели непосредственно связаны с назначением установки (осушка, адсорбционно-каталитический процесс, рекуперация, очистка вентиляционных выбросов и т. д.), типом адсорбента (активный уголь, цеолиты, силикагели и др.), а также с конструктивными особенностями применяемого оборудования и технологической схемой процесса. Экономические показатели и сам метод регенерации зависит также от физико-химических свойств веществ, извлекаемых из газовых потоков или потоков жидкостей, и от присутствия различных примесей в очищаемом потоке. [c.172]

    Газ-носитель подвижная фаза, В качестве газа-носителя применяют азот, воздух, гелий, водород и реже другие газы, не вступающие в реакцию с исследуемыми газами и наполняющими колонку сорбентом. В качестве наполнителя колонок (неподвижная фаза) могут быть применены указанные ранее адсорбенты — активированный уголь, молекулярные сита (искусственные цеолиты), силикагели, окись алюминия — или специальные жидкости типа высококипящих углеводородов, нанесенные на поверхность малоактивного адсорбента. В Советском Союзе в качестве такового применяют обычно измельченный инзенский кирпич, выпускавшийся ранее под маркой ИНЗ-600, или вновь разработанный диатомовый носитель марки ТНД-ТС-М. За рубежом выпускают аналогичные адсорбенты под различными марками (стерхамол, хромосорб и др.) Такие адсорбенты, на которые наносится тонкий слой жидкости, назьшают носителями (не смешивать с газом-носителем). Их роль состоит в том, чтобы создать большую поверхность для жидкости, являющейся активной неподвижной фазой. Применение в газовой хроматографии вместо активных адсорбентов жидкостей, обладающих различной растворяемостью газов, было предложено Джеймсом и Мартином в 1952 г., что резко увеличило возможности и улучшило метод газовой хроматографии. [c.67]

    Порошкообразные активные угли регенерируют в установках с пневмотранспортированием газовой суспензии угля через трубчатый или вихревой реактор при 800—1000°С в течение 3—5 с, либо в установках с кипящим слоем инертного зернистого материала (например, кварцевого песка), причем угольную суспензию вводят в нижнюю часть слоя (рис. УП-1). В установках обоих типов отрегенерированный уголь выделяют в циклонах или мокрых скрубберах [33, 36]. [c.199]


    Для рекуперации применяют активные угли растительного происхождения. Рекуперационные угли обладают обычно структурой смешанного типа, крупнозернисты и в большинстве случаев гранулированы. На отечественных рекуперационных установках с адсорберами периодического действия обычно применяют уголь марки АР. Его готовят из каменноугольной пыли и древесной смолы. Технические условия на уголь АР приведены в литературе [0-3]. Угли, применяемые для адсорбции газов и трудно сжижаемых паров и разделения газовых смесей, относят обычно к первому структурному типу. [c.38]

    Переработка газовых конденсатов. С увеличением добычи нефти возрастает количество попутных газов и конденсатов, являющихся ценным сырьем для нефтехимической промышленности. В работах [42, 43[ показана возможность рационального использования газоконденсатов с помощью цеолитов. В работе [42] исследовали конденсаты, богатые нафтеновыми и ароматическими углеводородами. Использование цеолита NaX в системе бензол — циклогексан позволило очистить циклогексан от примеси бензола на 99,999%. Указывается [42] на возможность применения с целью получения бензола и циклогексана двух технологических схем переработки газовых конденсатов. Для извлечения таких ценных углеводородов из фракций конденсатов наряду с активными углями и пористыми стеклами используют и молекулярные сита типа X, L, Y и др. различных ионных форм [43]. Молекулярные сита сохраняют высокую адсорбционную активность по бензолу при 250 °С, в отличие от адсорбентов старого типа (силикагель, активированный уголь), характеризующихся резким снижением активности при повышении температуры лишь до 50 °С. Степень извлечения из конденсата бензола близка к 98—99%. Выход бензола на исходное сырье равен 24—28 вес.%, его чистота составила 99,9 вес.%. Степень извлечения нормальных парафиновых углеводородов равна 95—98%, их чистота — 95—-99%. Выход очищенного циклогексана концентрацией 99,9% составил 11% на исходное сырье. Для извлечения из газоконденсатов указанных углеводородов спроектирована укрупненная адсорбционная установка производительностью 2,5 т сут по исходному сырью-[43[. [c.165]

    В настоящее время промышленность производит разнообразные типы адсорбентов, обладающих различной пористой структурой и разными свойствами поверхности, — активированные угли, силикагели, синтетические цеолиты и др. Это позволяет для каждого конкретного случая подобрать высокоселективный сорбент, который обеспечивает очистку газового потока с малыми потерями целевого продукта. Для адсорбционной очистки газов применяют главным образом пористые адсорбенты активированный уголь, силикагель, цеолиты, отличающиеся высокой адсорбционной активностью и сравнительно легко регенерируемые. [c.39]

    Активированный уголь каталитически воздействует на процесс окисления адсо ционного сероводорода до элементной серы. Для возможности осуществления процесса в газовой смеси должен присутствовать кислород и 0,1-0,2 г на 1 м смеси аммиака. Аммиак необходим, очевидно, для поддержания щелочности поверхности активированного угля. По мере протекания процесса активность угля понижается из-за того, что его поры забиваются выделяющейся элементной серой. Сероемкость активированного угля до проскока сероводорода может составлять в зависимости от типа применяемых углей 50-150% (массовая доля) загружаемого адсорбента. Процесс поглощения идет с выделением тепла. После насыщения активированного угля элементной серой необходимо провести регенерацию отработанного адсорбента. Регенерация угля осуществляется экстракцией серы водным раствором сернистого аммония по реакции [c.70]

    Насыщение угля влагой — процесс чрезвычайно медленный равновесие устанавливается в течение нескольких месяцев. Вследствие этого в большинстве реальных технологических процессов влажность среды практически не оказывает влияния на эффективность извлечения примесей из газовой или жидкой среды. Активный уголь — единственный гидрофобный тип промышленных адсорбентов, и это качество нредопределпло его широкое использование для рекуперации паров, очистки влажных газов и сточных вод. [c.88]

    Задание на проектирование. Рассчитать ядсорбционмую установку периодического действия с неподвижным слоем адсорбента для улавливания паров метанола из воздуха, работающую по четырехстадийному циклу при следующих условиях расход смеси — 7370 м ч температура паровоздущной смеси -- 20 С атмосферное давление — 0,1013-10 Па начальная концентрация метанола в газовой смеси -С =1,8-10 кг/м проскоковая концентрация составляет 5% от начальной тип аппарата — вертикальный адсорбер адсорбент — активный уголь. [c.275]


    Г идратация олефинов в спирты (в газовой или жидкой фазах), в газовой фазе исходные вещества пропускают, главным образом, над веществами, обладающими адсобрцион-ной способностью, такого типа как пемза, силикагель, активный уголь, которые могут быть также пропитаны активирующими веществами. Получение этилового и пропилового спиртов [c.120]

    Более разнороднопористый адсорбент — активный уголь не испытывает депрессии величины предельного адсорбционного объема вплоть до к-гептапа. Например, предельный адсорбционный объем активного угля СКТ, определенный из изотерм адсорбции к-С Нщ, W- 5H12 и к-СбН 4, одинаков и составляет 0,537 см /г. Только для высших углеводородов часть особо мелких пор газовых углей типа СКТ недоступна [1]. [c.413]

    Методика. Исследование скорости дегидрирования бутана проводилось на установке проточного типа с неподвижным слоем катализатора, состоявшей из вертикальной электропечи с кварцевым реактором диаметром 2 мм, систем подачи и замера газовых потоков, а также системы для замера и регулирования температуры. В реактор загружали 3—10 мл катализатора с размером частиц около 0,7 мм. Применялся бутан чистотой 99,2—99,6%. Температура в середине слоя катализатора поддерживалась с точностью 1°. Было найдено [14], что в условиях опытов активность катализаторов достигает максимальной величины спустя 4—10 мин от начала подачи бутана и далее остается постоянной в течение 15—20 мин. Поэтому во всех опытах в первые 10 мин газ выбрасывался в атмосферу, а общая длительность дегидрирования составляла 20—25 мин. Регенерация катализатора после каждого опыта проводилась воздухом при строго постоянных условиях (650 С). Снижение начального давления бутана достигалось разбавлением его очищенным азотом. Выходы бутилена, избирательность и коэффициент увеличения объема газа рассчитывались по составу полученного контактного газа. Образующийся уголь в расчетах не принимался во внимание, что практически не сказывается на величине выходов за цикл, но приводит к небольшому завышению избирательности (не более, чем 1 отн.%). При таком расчете отклонение избирательности от 1 вызывается только крекингом и, следовательно, по этой величине избирательности легко рассчитать скорость крекинга. В расчетах принимается, что исходный бутан содержит 100% н - С4Н1д, а под содержанием н - С4Нд фактически понимается сумма н - С4Н8 и [c.72]

    Адсорбционная способность различных форм угля значительно превосходит адсорбционную способность других веществ. Она изменяется не только в зависимости от природы и характера предварительной обработки угля, но также связана с типом адсорбируемого вещества. Адсорбционная способность жидкостей зависит от сжимаемости. Эфир значительно более сжимаем, чем вода, поэтому он занимает внутри древесного угля объем, который равен лишь одной десятой объема, занимаемого водой. Харкинс и Эвинг [217], работая с кокосовым маслом, пришли к заключению, что жидкости, проникающие в поры угля, сжимаются под действием сил молекулярного притяжения, равных давлению в несколько тысяч атмосфер. Неорганические электролиты нормально адсорбируются на угле анион и катион адсорбируются почти одинаково. Эта адсорбция слабая, она достигает приблизительно 0,01—0,5 миллимолей на 1 г адсорбента. Большие молекулы органических электролитов адсорбируются углем легче. Если уголь распределяется между двумя несмешивающимися гидрофобными жидкостями, то он лучше смачивается органическими жидкостями, чем водой или водными растворами. Когда угли применяются с осажденным на них катализатором в процессах гидрогенизации или дегидрогенизации, часто наступает потеря активности это можно устранить применением обработки воздухом или кислородом. Но вследствие того, что эта обработка помогает лишь временно, рекомендуется применять активированный уголь, подвергнутый тер мической, кислотной или газовой обработке. Обладая высокими адсорбционными силами, носитель действует как вещество, придающее катализаторам устойчивость при отравлении. [c.480]

    Эрган [45] представил результаты, являющиеся убедительным доводом в пользу механизма В. Опыты проводились в кипящем слое на трех различных типах угля (цейлонский графит, активированный уголь и активированный графит). Эти образцы содержали минеральные примеси, варьирующие в довольно щи-роких пределах (от следов до 0,5%), и, хотя об этом не упоминается в статье, они, по-видимому, сильно отличались по величине удельной поверхности. Однако Эрган нашел (см. рис. 4), что константа равновесия реакции (1) механизма В не зависит от типа используемого угля и что в температурном интервале 800—1400° реакция характеризуется средней величиной АН = = -1-23 ккал моль. Поскольку температурный коэффициент имеет большую величину, Эрган считает, что равновесие оказывает сильное влияние на скорость газификации. Если, например, в газовой фазе соотношение СО СОг равно 1, то занятая С (О) доля общего числа активных мест в этом случае возрастает от 0,0215 до 0,81 при переходе от 700 к 1400°. Так как скорость газификации пропорциональна числу занятых мест, влияние константы равновесия на скорость осуществляется через ее влияние на концентрацию занятых мест. [c.166]

    Как было отмечено в гл. V (см. стр. 149, 150 и 155), активированные угли используются в газовой хроматографии для анализа низкокипящих газов, в частности благородных газов, а также легких углеводородных газов. Среди микропористых активных углей, пригодных для этого, можно указать сарановые угли (с небольшим объемом наиболее тонких и однородных пор). Менее пригодны уголь СКТ-2 (получаемый из торфа методом пропитки сернистым калием) и угли типа АГ, получаемые на основе ископаемых углей. [c.233]


Смотреть страницы где упоминается термин Активные угли газового типа: [c.413]    [c.119]    [c.14]    [c.563]   
Смотреть главы в:

Активные угли -> Активные угли газового типа




ПОИСК





Смотрите так же термины и статьи:

Активные угли

КСМ, активном угле GKT

Уголь Угли активный



© 2024 chem21.info Реклама на сайте