Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

К АДГЕЗИИ ПОЛИМЕРОВ Образование адгезионного контакта полимеров

    Термодинамический подход предполагает необходимость обсуждения двух проблем-образования адгезионного контакта и взаимодействия контактирующих поверхностей полимеров. Поскольку эти проблемы тесно связаны с рассмотрением межфазных процессов, наибольшее внимание уделено описанию явлений смачивания и растекания. При этом формальное рассмотрение дополняется анализом энергетики межфазных взаимодействий полимеров, для чего обсуждается проблема оценки энергетических характеристик поверхности твердых, главным образом полимерных тел. Излагаемые соображения с учетом значимости процессов, протекающих на границах раздела элементов соединения, имеют важное значение для исследования адгезии. [c.5]


    Известно, например, что недогрев полимера приводит к сверх-молекулярным образованиям, отрицательно сказывающимся на формировании адгезионного контакта (т. е. уменьшается число функциональных групп, обеспечивающих молекулярные связи в зоне контакта). Добавление в полимер различных пластификаторов приводит к разрушению этих образований и способствует лучшей адгезии. Решающее значение на величину адгезионной прочности феноло-формальдегидных смол к поверхности твердых тел имеют гидроксильные группы [2]. [c.127]

    Следовательно, частичное или полное исчезновение поверхности раздела адгезив — субстрат и образование переходного диффузионного слоя — лишь частный случай проявления совместимости полимеров в адгезионных системах. В системах, состоящих даже из совместимых полимеров, взаимное растворение (диффузия) часто не происходит в силу ряда обстоятельств [237] (низкое значение коэффициента диффузии, возникновение в процессе формирования адгезионного соединения трехмерной сетки в адгезиве и т. д.). Поэтому в системе адгезив — субстрат способность полимеров к совместимости может проявляться в достижении достаточно полного контакта на границе раздела фаз, т. е. в смачивании. [c.84]

    При химическом взаимодействии на границе раздела адгезив — субстрат наибольшего эффекта следует ожидать тогда, когда процесс протекает с низкой энергией активации [113]. Чем меньше энергия активации, тем большее число связей возникнет на единице поверхности раздела адгезив — субстрат. Последнее обстоятельство чрезвычайно важно именно для случая адгезионной связи, так как при этом установление молекулярных контактов затруднено., К числу процессов, протекающих с низкими энергиями активации, относятся реакции образования комплексов с переносом заряда (КПЗ). Образование КПЗ в полимерах может происходить более интенсивно, чем в соответствующих низкомолекулярных соединениях. Кроме того, эти процессы протекают без выделения побочных продуктов, что также чрезвычайно важно для достижения высокой адгезионной прочности. [c.369]

    С термодинамич. точки зрения для упрочнения необходимо, чтобы энергия адгезии полимер — наполнитель была больше энергии когезии полимера. Этот вывод сделан на том основании, что при условии адгезионного и.а-рушения контакта разделение фаз сопровождается исчезновением поверхности раздела между полимером и наполнителем с образованием равных по площади поверхностей обеих фаз. Свободная энергия адгезии между двумя фазами выражается ур-нием  [c.165]


    Следует учитывать, что условия контакта молекулы полимера с поверхностью субстрата зависят от конформации молекулы в момент образования адгезионной системы, в связи с чем на адгезию полимеров могут влиять такие изменяющие конформацию молекул факторы, как, например, значение pH [5]. [c.21]

    Молекулярному взаимодействию, согласно адсорбционной теории адгезии, предшествует образование контакта между молекулами адгезива и подложки. Повышение температуры, введение пластификатора, повышение давления, применение растворителей — все эти факторы облегчают протекание первой стадии процесса и способствуют достижению более полного контакта. Смачивание и растекание адгезива по поверхности подложки сопровождаются поверхностной диффузией, миграцией молекул адгезива по поверхности. Все эти процессы в той или иной степени являются подготовительными, но играют очень важную роль. Учитывая сказанное, вполне естественным было бы ожидать наличия взаимосвязи между числом функциональных групп и адгезионной прочностью. Такая взаимосвязь была выявлена при изучении адгезии полимеров винилового ряда к целлофану [18, 19]. Оказалось, что между адгезионной прочностью, измеренной методом отслаивания (Ао), и содержанием функциональных групп, например карбоксильных существует непосредственная связь, которая в координатах 1дА—[СООН] описывается прямой. [c.14]

    Отсутствие достоверной информации о свойствах адгезивов и субстратов в процессе принудительного формирования макроскопического контакта, а также существенные математические трудности обусловливают то, что, несмотря на известный прогресс в данной области, реология образования адгезионных соединений представляет один из наименее разработанных разделов науки об адгезии полимеров. Тем не менее феноменология влияния соответствующих факторов в целом ясна, и их учет необходим как при физико-химическом анализе закономерностей формирования макроскопического контакта, так и в прикладном плане-при разработке технологии получения адгезионных соединений. [c.137]

    При создании адгезионного шва полиэтилена с другим материалом при повышенных температурах, например горячим прессованием, зависимость адгезии от величины поглощенной дозы излучения имеет вид кривой с максимумом. Это объясняется одновременным протеканием при облучении двух противоположно влияющих на адгезию процессов окисления и сшивания. Повышение дозы на участке кривой, соответствующем величинам доз ниже оптимальной, приводит к возрастанию адгезии благодаря накоплению полярных кислородсодержащих групп на поверхности полиэтилена. Дальнейшее увеличение дозы, однако, сопровождается снижением адгезии, несмотря на возрастание концентрации полярных групп в поверхностном слое из-за превышения оптимального значения вязкости полимера для заданных условий образования адгезионного шва (температура, давление, продолжительность, природа и характер поверхности другого материала, участвующего в адгезионном контакте). Высокая вязкость затрудняет изменение конфигурации цепей, необходимое для ориентации диполей полярных групп, введенных в поверхностный слой полиэтилена, и их эффективный контакт с поверхностью другого материала. В результате снижается доля полярных групп, способных к электростатическому взаимодействию и участвующих в создании адгезионного соединения. Повышенная вязкость полиэтилена может препятствовать также заполнению пор и дефектов в микрорельефе поверхности другого материала и тем самым снижать величину поверхности адгезионного контакта. [c.102]

    Число работ, в которых рассматриваются причины адгезии полимеров к стеклу, весьма ограниченно [8—19]. Было показано, что адгезия полимеров к стеклу зависит от времени и температуры контакта. Полученный экспериментальный материал позволяет утверждать, что при образовании адгезионной связи между полимером в высокоэластичном или вязкотекучем состоянии и стеклом весьма существенную роль играют либо процессы диффузии по поверхности стекла, либо микрореологические процессы проникновения полимера в микротрещины на поверхности стекла [17—201. [c.292]

    По эффективности воздействия на свойства полимера, в частности на его прочность, наполнители условно подразделяют на активные (упрочняющие, усиливающие) и неактивные (инертные) Например, активными для резин являются некоторые виды технического углерода, инертными — мел, каолин. Наполнитель тем активнее, чем больше энергия адгезии полимера к наполнителю превышает энергию когезии полимера. Этот вывод основан на том, что при условии нарушения адгезионного контакта (т. с. прн разделении фаз) нсче - ает поверхность раздела между полимером и наполнителем с образованием равных ио площади поверхностей обеих фаз. Математически это можно представить следующим брадом  [c.426]


    Одной из первых попыток объяснить механизм адгезии является адсорбционная теория. Адсорбционная теория рассматривает адгезию как результат проявления сил молекулярного взаимодействия между контактируюш ими молекулами адгезива н субстрата. Важно, чтобы адгезив и субстрат обладали полярными функциональными группами, способными к взаимодействию, как это следует из известного правила полярности [88] Высокая адгезия не может быть достигнута между полярным субстратом и неполярным адгезивом или между неполярным субстратом и полярным адгезивом . Молекулярному взаимодействию согласно адсорбционной теории адгезии [89—97] предшествует образование контакта между молекулами адгезива и субстрата. Повышение температуры, введение пластификатора, повышение давления, применение растворителей облегчают протекание первой стадии процесса и способствуют более полному контакту. Смачивание и растекание адгезива по поверхности субстрата сопровождается поверхностной диффузией, миграцией молекул адгезива по поверхности. Эти процессы в той или иной степени являются подготовительными, но играют очень важную роль и будут подробно рассмотрены в гл. II. С позиций адсорбционной теории вполне естественно было бы ожидать наличия зависимости между числом функциональных групп и адгезией. Такая зависимость была выявлена при изучении адгезии полимеров винилового ряда к целлофану. Была установлена [96] в некоторых случаях количественная связь между адгезионной прочностью и концентрацией карбоксильных групп в адгезиве. [c.38]

    Приведение полимерного раствора в контакт с подложкой обусловливает возникновение межмолекулярного (адгезионного) взаимодействия, которое может иметь различную природу (ван-дер-ваальсовы силы, водородные связи, донорно-акцепторное взаимодействие и т. д.). При этом на твердых поверхностях возможна адсорбция полимера из раствора. В отличие от адсорбции низкомолекулярных веществ адсорбция полимеров в значительной степени определяется большой длиной молекул, продол-жительньге временем существования в растворах надмолекулярных флуктуационных образований и полидисперсностью образцов полимера. Вследствие этого в зависимости от концентрации полимера в растворе и качества растворителя формируются различные адсорбционные слои, изменяющиеся во времени. Подробно адсорбция полимеров, а также комплекс вопросов, связанных с поверхностными явлениями в полимерах, включая адгезию полимеров к подложкам, рассмотрены в работах [107— 111]. По данным этих работ, твердая поверхность ограничивает подвижность молекул как вследствие геометрических затруднений, так и в результате энергетического взаимодействия. Это влияние твердой поверхности может распространяться в глубь жидкой фазы на расстояние до 10 мкм. Это приводит к изменению плотности упаковки макромолекул полимера, скорости протекания релаксационных процессов и характера структурообразования. [c.67]

    При соприкосновении двух полимеров в высокоэластическом или вязкотекучем состояниях происходит их слипание — аутогезия, если полимеры одинаковы, или адгезия, если полимеры имеют разную природу [46, 381]. Адгезия — сложное явление. Механизм образования адгезионного соединения зависит от природы полимеров, их надмолекулярной и фазовой структуры, присутствия различных модифицирующих и функциональных добавок, температуры, давления и т. д. [383]. Однако при контакте взаиморастворимых полимеров выше 7 с основная роль принадлежит диффузии макромолекул в двух соприкасающихся фазах. Информация о роли диффузии в явлениях аутогезии эластомеров цоявилась в начале 40-х годов. В последующих работах [384] на основании косвенных данных (преимущественно по временной и температурной зависимости адгезионной прочности) была показана идентичность влияния различных внешних параметров на диффузионные процессы и адгезию полимеров, что послужило основой для превращения гипотезы в научную теорию. [c.252]

    Так, рассматривая генезис представлений о природе адгезии полимеров, нетрудно видеть, что механическая концепция отдает предпочтение влиянию микрорельефа поверхности субстрата [1], адсорбционная-сорбции адгезива [2], химическая-образованию валентных межфазных связей [3], диффузионная - совместимости полимеров в зоне адгезионного контакта [4], реологическая-повыщению прочности граничных слоев контактирующих полимеров [5], микрореологическая-затеканию адгезива в микродефекты поверхности субстрата [6], электрическая-сводит проблему к возникновению двойного электрического слоя на приведенных в контакт поверхностях [7], электрорелаксационная-при этом принимает во внимание специфику релаксационных явлений в полимерах [8], молекулярная, по мнению ее авторов, представляет собой развитие адсорбционной концепции [9]. Видимо, наиболее обосновано мнение [10], согласно которому множество разнообразных, иногда взаимоисключающих концепций свидетельствует об отсутствии единой физически непротиворечивой теории. [c.4]

    При дублировании двух слоев не-вулканизованных резиновых смесей, которые можно рассматривать как вязкие или упруговязкие жидкости, сравнительно быстро достигается плотный контакт по площади, соответствующей номинальной площади контакта. Если полимеры несовместимы термодинамически, то между ними сохраняется четкая граница раздела. При этом адгезия определяется межмолекулярным взаимодействием [32] или (при полном отсутствии воздушных включений, загрязнений и оксидных пленок на поверхности) когезионной прочностью более слабого компонента, же юлимеры совме Т1ш 1 (самопроизвольно смеши-ваютсяУРгоГвследствие взаимодиффузии макромолекул будет происходить постепенное размывание границы контакта с образованием промежуточного диффузного слоя. При этом граничный слой приобретает свойства полимера в объеме и прочность адгезионного соединения также следует рассматривать с позиций общих представлений о природе (объемной) прочности полимеров. При соединении резиновой смеси с вулканизатом, даже если они приготовлены на основе совмещающихся каучуков, вследствие наличия пространственной устойчивой структуры у вулканизата возможна, главным образом, односторонняя диффузия смеси. Поэтому всегда сохраняется четкая граница раздела и глубокий микрорельеф поверхности. Истинная (фактическая) площадь контакта в этом случае может быть гораздо больше (в десятки раз) номинальной [39, 40] и при полном покрытии этого рельефа пластичной резиновой смесью прочность связи может быть довольно высокой (до 1—2 МПа), даже если удельное межмолекулярное или химическое взаимодействие сравнительно мало и имеются многочисленные дефекты и включения в граничном слое. Например сложная структура технических волокон (рис. 2.18) может быть причиной многих дефектов резино-кордной системы. [c.96]

    Специфика рассмотренных нами полимерных адгезивов во многих случаях определяет особенности системы адгезив — субстрат, а в итоге — адгезионную прочность. Вторичные структурные образования, возникаюш ие уже в умеренно концентрированных растворах полимеров, обусловливают не только специфический характер адсорбции полимеров на твердых поверхностях, но и вообш,е особенности взаимодействия макромолекул с различными субстратами. Так, развернутая форма полимерной цепи способствует улучшению условий взаимодействия полимера с поверхностью, а глобулярная препятствует созданию достаточно большого числа контактов и иногда не позволяет достичь высокой адгезионной прочности. В ряде случаев (например, нри использовании плохого для данного полимера растворителя) макромолекулы полимера, несмотря на способность к специфическому взаимодействию с твердой поверхностью, все-таки не адсорбируются на субстрате и проявляют повышенную склонность к струк-турообразованию. В растворах или дисперсиях некоторых полимеров конформация макромолекул зависит от pH. Обнаружено также влияние pH на прочность адгезионной связи [114]. [c.380]


Смотреть страницы где упоминается термин К АДГЕЗИИ ПОЛИМЕРОВ Образование адгезионного контакта полимеров: [c.301]    [c.10]    [c.17]    [c.50]    [c.301]    [c.106]    [c.67]    [c.90]    [c.301]   
Смотреть главы в:

Физическая химия адгезии полимеров -> К АДГЕЗИИ ПОЛИМЕРОВ Образование адгезионного контакта полимеров




ПОИСК





Смотрите так же термины и статьи:

Адгезия



© 2025 chem21.info Реклама на сайте