Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Типы диаграмм состояния двухкомпонентных систем

    На основании температур начала кристаллизации двухкомпонентной системы 1) постройте диаграмму фазового состояния (диаграмму плавкости) системы А —В 2) обозначьте точками / — жидкий расплав, содержащий а % вещества А при температуре Тй II — расплав, содержащий а % вещества А, находящийся в равновесии с кристаллами химического соединения III — систему, состоящую из твердого вещества А, находящегося в равновесии с расплавом, содержащим Ь % вещества А IV — равновесие фаз одинакового состава V — равновесие трех фаз 3) определите состав устойчивого химического соединения 4) определите качественный и количественный составы эвтек-тик 5) вычертите все типы кривых охлаждения, возможные для данной системы, укажите, каким составам на диаграмме плавкости эти кривые соответствуют 6) в каком фазовом состоянии находятся системы, содержащие с, е % вещества А при температуре Т Что произойдет с этими системами, если их охладить до температуры Т 7) определите число фаз и число условных термодинамических степеней свободы системы при эвтектической температуре и молярной доле компонента А 95 и 5 % 8) при какой температуре начнет отвердевать расплав, содержащий с % вещества А При какой температуре он отвердеет полностью Каков состав первых кристаллов 9) при какой температуре начнет плавиться система, содержащая й % вещества А При какой температуре она расплавится полностью Каков состав первых капель расплава 10) вычислите теплоты плавления веществ А и В 11) какой компонент и сколько его выкристаллизуется из системы, если 2 кг расплава, содержащего а % вещества А, охладить от Тх до Г,  [c.247]


Рис. 106. Диаграмма состояния двухкомпонентной системы без химических соединений с твердыми растворами неритектического типа и монотектическим равновесием ниже переходной точки. Рис. 106. <a href="/info/3276">Диаграмма состояния двухкомпонентной системы</a> без <a href="/info/2527">химических соединений</a> с <a href="/info/2260">твердыми растворами</a> неритектического типа и <a href="/info/350723">монотектическим равновесием</a> ниже переходной точки.
    Перейдем теперь к двухкомпонентным системам, для состояния которых необходимо указание уже трех переменных например, давления, температуры и концентрации. Взаимосвязь трех переменных величин изображается с помощью трехмерной фигуры. Рассмотрим пример такой фигуры для бинарной системы, компоненты которой в жидком состоянии образуют гомогенные растворы во всей области концентрации, а в твердом состоянии вообще не растворяются один в другом (рис. 117). На рисунке изображены области трех агрегатных состояний парообразного, жидкого и твердого. Точки I, 2 я Г, Т соответствуют температурам кипения чистых компонентов при различных давлениях, а расположенные ниже точки 5, 6 и 5, 6 — температурам плавления. На диаграмме можно различить ряд поверхностей. Так, выпуклая поверхность 132 1 2 3 выражает зависимость температуры кипения жидких растворов от состава пара. Под ней находится вогнутая поверхность М2 Г, 4, 2, выражающая зависимость температуры кипения от состава жидкого раствора. Сечения такого типа диаграмм, относящиеся к постоянному давлению (р = = I атм), мы рассматривали в гл. VII (см. рис. 109). Поверхность 576 5 7 6 — диаграмма плавкости, т. е. зависимость температуры начала кристаллизации расплава от его состава и давления. Точнее говоря, при температурах и составах, соответствующих точкам на поверхности 575 7, жидкий расплав может находиться в равновесии с твердым первым компонентом, а соответственно на поверхности 76 7 6 — с твердым вторым компонентом. [c.319]

    На рис. 44 представлен тип диаграммы состояния двухкомпонентной системы А—В с эвтектикой (без бинарных химических соединений и твердых растворов). Рассмотрим путь кристаллизации расплава состава а. Прежде всего определим, что конечными фазами кристаллизации любого бинарного состава в этой системе будут компоненты А и В, а кристаллизация всех подобных составов будет заканчиваться при эвтектической температуре 4 в точке эвтектики. При понижении температуры от точки а до будет происходить только охлаждение расплава. При достижении температуры ликвидуса tb жидкая фаза (расплав) состава Ь окажется насыщенной по отношению к компоненту А (в области IKteE в равновесии с жидкостью находятся кристаллы А, что указывается на диаграмме соответствующим обозначением А + ж) и последний при дальнейшем охлаждении будет кристаллизоваться из расплава. Состав жидкой фазы будет изменяться при этом по кривой ликвидуса от точки Ь к точке Е (система моновариантна). При достижении эвтектической температуры 4 жидкость, отвечающая эвтектическому составу Е, кристаллизуется с одновременным выделением кристаллов А и В, поскольку точка Е принадлежит одновременно обеим кривым ликвидуса txE и t E) и, следовательно, жидкость состава Е насыщена по отношению к обоим компонентам. При этом пока не исчезнет вся жидкая фаза, температура 4 и состав (Е) жидкой фазы будут оставаться постоянными, поскольку система при этих параметрах инвариантна (температура при отводе от системы теплоты будет поддерживаться постоянной за счет выделения теплоты кристаллизации). Кристаллизация закончится в точке эвтектики Е. [c.223]


    Обоснование основных типов диаграмм состояния двухкомпонентных систем при помощи кривых концентрационной зависимости изобарно-изотермического потенциала. Выше отмечалось, что сочетание различных видов двухфазных и трехфазных равновесий позволяет вывести все принципиально возможные типы диаграмм фазового равновесия. Покажем это на примере некоторых важнейших диаграмм. Рассмотрим фазовые соотношения в системе с наличием трехфазного эвтектического равновесия. [c.283]

Рис. 73. Схематическое изображение перехода от одного типа диаграммы состояния двухкомпонентной системы к другому типу под влиянием внешнего давления Рис. 73. <a href="/info/376711">Схематическое изображение</a> перехода от одного типа диаграммы состояния двухкомпонентной системы к <a href="/info/1455878">другому типу</a> под <a href="/info/6240">влиянием внешнего</a> давления
    Рнс. 66. Диаграмма состояния двухкомпонентной системы с неограниченной растворимостью компонентов в жидком состоянии и ограниченной растворимостью в твердом состоянии (тип I) [c.196]

    Для двухкомпонентных систем, соответствующих диаграмме состояния типа V, плавление проходит почти так же, как плавление систем с простой эвтектикой, затвердевшие препараты в обоих случаях также очень сходны. Поэтому одним диффузионным методом, без дополнительных исследований, нельзя дифференцировать обе системы. Это наиболее трудные объекты для диффузионного метода анализа, хотя исследование контактных препаратов часто дает возможность дополнить полученную термическим анализом диаграмму состояний в нестабильной области вследствие появления изоморфных рядов смешанных кристаллов. Это доказывает наличие одного из типов твердых растворов, позволяет отличить систему от простой эвтектики и разъяснить отношения кристаллического подобия кристаллов. [c.875]

    К какому типу двухкомпонентных систем можно отнести изученную систему — система с полной растворимостью компонентов в жидком и кристаллическом состояниях или система с полной растворимостью в жидком состоянии и не растворимостью компонентов в кристаллическом состоянии Что такое эвтектика Каков ее состав Нарисуйте в общем виде диаграмму состояния двухкомпонентной системы, аналогичную изученной системе. [c.453]

    Расчет диаграмм состояния заключается, во-первых, в предсказании типа диаграммы состояния на основе свойств чистых компонентов и, во-вторых, в отыскании уравнений линий равновесия сосуществующих фаз. Основой при этом является знание температурной и концентрационной зависимости энергии Гиббса (О), которая в приближении идеальных растворов для любой фазы двухкомпонентной системы, состоящей из компонентов I и / определяется в общем случае выражением  [c.286]

    Диаграмма состояния двухкомпонентной системы с инконгруэнтно плавящимся химическим соединением (рис. 131) представляет собой сочетание участков двух более простых диаграмм, рассмотренных выше (рис. 129 и рис. 130). Расчет массы и состава фаз, на которые распадается система в различных фигуративных точках, делается так же, как это показано в разобранных примерах на предыдущих диаграммах. Поэтому мы остановимся только на точках I, II и III, в которых происходят превращения, характерные для систем данного типа. [c.389]

    Наибольшее значение из рассмотренных типов силикатов и алюмосиликатов имеет каолинит. При нагревании до 600° и выше каолинит претерпевает ряд превращений, сопровождающихся, повидимому, его разложением на свободные окислы (кремнезем и глинозем). Диаграмма состояния двухкомпонентной системы АЬОз—8Юг представлена на рис. 10. [c.33]

    Естественно, что монотектическое и синтектическое трехфазные равновесия вносят самостоятельный элемент в общую картину фазового равновесия двухкомпонентной системы, отличающейся разрывом растворимости в жидком состоянии, поскольку они завершаются стабилизацией либо одного (рис. 56,а), либо двух (рис. 56,6) двухфазных равновесий с участием жидких фаз, способных при дальнейшем охлаждении кристаллизоваться и, следовательно, формировать другие трехфазные равновесия — уже эвтектического либо перитектического типа. Варианты фазовых диаграмм при наличии в системе купола расслаивания и трехфазных монотектического и синтектического равновесий показаны на рис. 57 и 58. При наличии в системе двух трехфазных равновесий— монотектического и перитектического (рис. 57), разумеет-292 [c.292]

    Покажем это на примере диаграммы состояния первого типа для случая кристаллизации чистого компонента А из расплава А—В. В нижней части рис. VII.21 показана часть диаграммы двухкомпонентной системы, а в верхней —кривые зависимости энергии Гиббса моля расплава при различных температурах. [c.189]

    Двухкомпонентные системы. Совместное влияние Г и Р на состав двухкомпонентных смесей представлено на пространственных диаграммах (рис. 5.2,а, 5.2,6). Необходимо заметить, что та же самая информация представлена на этих диаграммах в более удобной форме в виде изобарических (или в отдельных случаях изотермических) сечений или в виде проекций на основание (рис. 5.2,6). Двухфазные зоны заштрихованы. На рис. 5.3 показаны три общих типа двухфазных систем при постоянном давлении, демонстрирующие впияние температуры и общего состава смеси на состояние фаз системы. Области однофазных систем различного состава ограничены отрезками Ха—Хь, Хс—Xd, Хе—X/ изотермы а/ (рис. 5.3,в). В других областях существуют двухфазные смеси с различным соотношением количеств фаз состава хь и Хс или Xd и Хе. В двухфазных областях состав фаз фиксирован, но их относительные количества меняются в соответствии с общим составом смеси и не влияют на условия равновесия. [c.252]


    На рис. 48 представлена диаграмма состояния дву.хкомпонент-ной системы с непрерывным рядом твердых растворов. Выше кривой ликвидуса находится однофазная область ненасыщенной жидкой фазы, между кривыми ликвидуса и солидуса t 2tв — двухфазная область жидкости и твердого раствора между компонентами А и В, обозначенного 5дв, и ниже кривой солидуса t 2tв — однофазная область твердого раствора 5дв (твердый раствор -— одна фаза). Следует отметить, что в данной системе, не имеющей разрывов непрерывности в составах твердого раствора, образуется всегда один и тот же твердый раствор переменного состава, т. е. твердый раствор одного и того же структурного типа, причем все двухкомпонентные составы кристаллизуются только в виде твердого раствора 5ав, а в чистом виде компоненты А и В из таких составов не выпадают. [c.230]

    МОНОТЁКТИКА (от греч. / vos — один и хг у,хо< — расплавленный), монотектическое превращение— реакция распада в двухкомпонентных системах жидкой фазы на твердую и жидкую иного состава. В ходе монотектической реакции из жидкой фазы при отводе тепла образуется твердая фаза Ид и жидкая фаза (рис.). Если давление постоянно, эта обратимая реакция протекает изотермически и осуществляется в сплавах, составы к-рых на диаграмме состояния лежат в пределах монотектической горизонтали аЬ. При охлаждении расплавов, составы которых определяются отрезком тЪ, мояо-тектической реакции предшествует распад однородной жидкости на жидкости Ж и Ж". Их состав описывается бинодальной кривой ткЬ. При монотектической температуре, соответствующей изотерме аЪ, в равновесии находятся жидкости состава точек т ж Ь (Ж и Ж ) и твердая фаза состава точки а (а ). В процессе кристаллизации из жидкого расплава состава точки т выделяются дендритообразные кристаллы твердой фазы а. При медленной (равновесно ) кристаллизации сплавов, составы к-рых лежат в интервале отрезка тЪ, происходит разделение жидкого расплава на два несмешивающихся слоя составов точек тя Ь, в каждом из к-рых дальнейшее затвердевание происходит обособленно. Ниже монотектической т-ры из жидкости Ж" происходит выделение фазы а с последующей кристаллизацией жидкости по эвтектическому (как изображено на рис.) или др. типу. В трехкомпонентной системе при постоянном давлении монотектическое равновесие устанавливается между дву- [c.15]

    Вернемся теперь к рис. 10 и посмотрим, какие непосредственные сведения о структуре системы полимер—растворитель можно почерпнуть из анализа этой фазовой диаграммы. Прежде всего будем подниматься от более низких к более высоким температурам вдоль оси ага = 1. Если полимер аморфный, он последовательно проходит через все три релаксационных ( физических состояния стеклообразное, высокоэластическое и вязкотекучее. Они представляют собой разновидности жидкого фазового состояния с раз ][ичной степенью, замороженности сегментальной подвижности цепей. Все это хорошо известные вещи, но о них иногда забывают при рассмотрении фазовых равновесий. В сущности, для системы аморфный полимер—растворитель всегда реализуется фазовое равновесие типа жидкость—жидкость (ибо, говоря о равновесии, мы должны принимать во внимание именно фазовое, а не релаксационное состояние той или иной двухкомпонентной фазы. При достаточно высокой температуре, но ниже ВКТС, раствор вероятнее всего распадается на два обычных раствора различной концентрации. Нередко, используя такое разделение на две жидкие фазы для фракционирования (практически в этом случае чаще варьируется растворитель, но вскоре мы убедимся, что в принципе это ничего не меняет), говорят об образовании коацервата — из-за внешней аналогии с коацервацией в амфифильных электролитных системах. [c.103]


Смотреть страницы где упоминается термин Типы диаграмм состояния двухкомпонентных систем: [c.182]    [c.263]    [c.194]    [c.182]    [c.16]   
Смотреть главы в:

Методы органической химии Том 2 Издание 2 -> Типы диаграмм состояния двухкомпонентных систем

Методы органической химии Том 2 Методы анализа Издание 4 -> Типы диаграмм состояния двухкомпонентных систем




ПОИСК





Смотрите так же термины и статьи:

Диаграмма состояния двухкомпонентных систем

Диаграммы системы

Диаграммы состояния

Системы двухкомпонентные

Системы состояние



© 2025 chem21.info Реклама на сайте