Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкое фазовое состояние полимеро

    Сложнее обстоит дело с анализом фазовых состояний полимера. В термодинамике различают кристаллические, жидкие и газовые фазы, отличающиеся друг от друга термодинамическими характеристиками (например, свободной энергией, плотностью и т. д.). Переход из одной кристаллической формы в другую сопровождается переменой характера кристаллической упаковки и является следствием изменения дальнего порядка. Переход в жидкое состояние происходит при полном разрушении дальнего порядка. Поэтому в отличие от кристаллических тел тела, находящиеся в жидком состоянии, называют стеклами, а фазовое состояние — стеклообразным. [c.21]


    Аморфное фазовое состояние полимеров характеризуется отсутствием дальнего порядка, флуктуационным ближним порядком в расположении молекул, устойчивость которого зависит от агрегатного состояния вещества, изотропией формы и физических свойств (т. е. Ил независимостью от направления), а также отсутствием четко выраженной температуры точки плавления. Для низкомолекулярных тел аморфному фазовому состоянию отвечает только жидкое агрегатное состояние, поскольку в твердом агрегатном состоянии они характеризуются трехмерным дальним порядком, т. е. образуют правильную кристаллическую решетку. Исключение составляют природные и синтетические смолы (природные смолы — канифоль, янтарь синтетические—фенолформальдегидные смолы с молекулярной массой 700—1000 и др.), а такл<е обычное силикатное стекло. Для смол и стекла переход из твердого агрегатного состояния в жидкое и обратный переход из жидкого в твердое протекает плавно. При этом изменений в структуре не происходит, так как в твердых и жидких стеклах наблюдается только ближний порядок расположения молекул. Такой постепенный переход из одного агрегатного состояния в другое без изменений в структуре, специфичный для аморфного фазового состояния, называют стеклованием, а аморфные твердые тела стеклообразными, или стеклами. [c.73]

    Твердому агрегатному состоянию полимеров соответствует два фазовых —кристаллическое и жидкое (аморфное). Жидкому фазовому состоянию соответствует два агрегатных — твердое (стеклообразное) и жидкое (расплав). Большинство распространенных промышленных полимеров (полистирол, поливинил- [c.22]

    Процесс растворения аморфных полимеров во многом напоминает смешение обычных жидкостей, что естественно, так как такие полимеры могут находиться только в жидком фазовом состоянии. [c.480]

    Аморфное фазовое состояние полимеров. Полимерам, находящимся в аморфном фазовом состоянии, могут соответствовать два агрегатных состояния — жидкое и твердое. [c.72]

    Здесь возникает естественный вопрос, как полимер в стеклообразном состоянии, обнаруживая механические свойства твердого тела, оказывается в то же время в жидком фазовом состоянии. Для ответа на этот вопрос необходимо учесть, что понятие о фазе является понятием чисто термодинамическим, в то время как представления об агрегатном состоянии основаны на рассмотрении нетермодинамических свойств, например таких, как собственный объем и форма и способность к их сохранению в тех или иных условиях. Поэтому нет ничего противоречивого в утверждении, что стеклообразный полимер, будучи твердым по агрегатному состоянию, по термодинамическим свойствам является жидкой фазой. [c.232]


    Жидкое фазовое состояние характерно для аморфных полимеров, а также кристаллизующихся полимеров при температурах выше температуры плавления. В жидкое фазовое состояние можно перевести некоторые кристаллизующиеся полимеры при очень быстром охлаждении расплава, при этом наблюдается ближний порядок в расположении отдельных участков макромолекул и отсутствие дальнего порядка. Однако в случае макромолекул, возникает двойственность понятий близко и далеко , так как расстояния, достаточно малые по отношению к длине цепной молекулы, могут быть очень большими по отношению к размеру сегмента. В связи с этим необходимо уточнять, о каких упорядоченных структурных элементах идет речь. [c.19]

    Полимеры в жидком фазовом состоянии могут иметь три типа структур 1) ближний порядок, когда в пределах малых областей атомы расположены более или менее регулярно 2) термически нестабильные кристаллиты, которые сохраняются выше температуры плавления, однако вследствие тепловых флуктуаций они непрерывно, исчезают и вновь возникают 3) пачки, способные в свою очередь к образованию более сложных структур дендритного типа. Некоторые из этих структур существуют в расплаве и в стеклообразном состоянии, однако в первом случае они флуктуируют, а во втором заморожены . Следует отметить, что вероят- [c.19]

    Полимеры могут находиться в двух агрегатных состояниях (жидком и твердом), двух фазовых состояниях (аморфном и кристаллическом) и трех релаксационных (или деформационных) физических состояниях (стеклообразном, высокоэластическом и вязкотекучем). Границы между этими физическими состояниями обычно характеризуют значениями температур стеклования с и текучести Гт. [c.34]

    Чтобы дать классификацию полимерных систем, способных образовывать жидкие кристаллы (и тактоиды), следует сделать несколько замечаний относительно упорядоченного фазового состояния полимеров вообще. Все основные фазовые состояния полимерных систем отвечают, как и для низкомолекулярных систем, трем уровням упорядочения аморфному, жидкокристаллическому и истинно кристаллическому. [c.32]

    Осуществляемые в результате изменения температуры (иногда давления) переходы из одного состояния в другое являются в общем обратимыми. Но из-за своей релаксационной природы они в значительной мере зависят от фактора времени. Эти переходы, наблюдение которых составляет одну из задач ТМА, не являются, конечно, фазовыми переходами. Полимер все время остается аморфным, т. е. находится в одном и том же — структурно-жидком — фазовом состоянии . Температуры переходов между релаксационными состояниями — это не термодинамические константы определяются они, но существу, условно. [c.71]

    Как известно, наполнители вводят в полимер для удешевления материала, для придания ему необходимых новых свойств, в том числе окраски (пигменты), но чаще всего — в целях усиления. В последнем случае наполнитель считают не инертным, а активным. Как указывает Липатов [255], для понимания механизма усиления необходимо учитывать все факторы, влияющие на свойства материала химическую природу полимера и наполнителя, тип наполнителя (дисперсный, волокнистый, тканый и др.), фазовое состояние полимера, адгезию полимера к поверхности, условия формирования наполненного полимера из раствора или расплава или условия отверждения жидкого связующего и пр. [c.182]

    Аморфное состояние полимеров - фазовое состояние (см.) полимеров, характеризующееся наличием только ближнего порядка (см.) во взаимном расположении элементов структуры. Наблюдается в твердом и жидком агрегатных состояниях (см.). [c.396]

    Полимеры могут находиться в твердом или жидком агрегатном состоянии, но твердому агрегатному состоянию могут соответствовать два фазовых состояния кристаллическое и аморфное (стеклообразное), а жидкому фазовому состоянию — два агрегатных состояния твердое (стеклообразное) и жидкое (расплав). Большинство широко распространенных полимеров находится в жидком фазовом состоянии. [c.39]

    При рассмотрении закономерностей, определяющих разрушение полимеров, находящихся в различных состояниях, целесообразно учитывать, что агрегатные и фазовые состояния полимеров не отражают полностью все многообразные состояния, определяющие законы их механического разрушения. Жидкое фазовое состояние, например, включает одновременно три физических состояния полимера стеклообразное, высокоэластическое и вязкотекучее. Законы механического разрушения в разных физических состояниях существенно отличны друг от друга. Твердое агрегатное состояние объединяет как кристаллическое состояние, так и стеклообразное. Принципиальные различия механических свойств полимеров в аморфном и кристаллическом состояниях очевидны. Поэтому с точки зрения изучения прочности полимеров удобно различать следующие физические состояния жидкое, высокоэластическое и твердое. Последнее включает в себя как стеклообразное (жидкое), так и кристаллическое фазовые состояния. [c.229]


    Полимеры могут находиться в твердом или жидком агрегатном состоянии, но твердому агрегатному состоянию могут соответствовать два фазовых состояния кристаллическое и аморфное (стеклообразное), а жидкому фазовому состоянию — два агрегатных состояния твердое (стеклообразное) и жидкое (расплав). Большинство широко распространенных полимеров находится в жидком фазовом состоянии. Гибкость длинных цепных молекул, составляющих полимер, обеспечивает не только богатство морфологических структур кристаллических образований, наличие агрегатных и фазовых состояний, но и различные физические состояния аморфного полимера. Известны три таких состояния стеклообразное, высокоэластическое и вязкотекучее. Полимерный материал переходит из одного физического состояния в другое при изменении температуры, которая оказывает существенное влияние на запас средней тепловой энергии макромолекул. Так, при комнатной температуре полистирол и полиметилметакрилат напоминают хрупкие тела, например, силикатное стекло , в то время как резина при той же температуре способна к очень большим обратимым деформациям. Даже идентичные по химическому строению полимерные материалы в зависимости от величины молекулярного веса при одной и той же температуре могут находиться в разных физических состояниях. [c.37]

    С другой стороны, растворение кристаллического полимера включает в себя смешение двух веществ, существующих в двух различных фазовых состояниях. Кристаллический полимер находится в кристаллическом фазовом состоянии, а растворитель — в жидкофазном. Так как две различные фазы не могут смешиваться и образовывать единую гомогенную систему, их смешение или растворение невозможно до тех пор, пока они обе не перейдут в одно фазовое состояние. Следовательно, первый этап растворения кристаллического полимера заключается в том, чтобы перевести его в жидкое фазовое состояние, что может быть осуществлено двумя путями а) нагреванием кристаллического полимера до его температуры плавления или б) перенесением его в такие условия, когда нарушается дальний порядок, обусловливающий кристаллическое фазовое состояние. Уменьшение растворимости с кристалличностью и ростом межмолекулярных когезионных сил — явление, присущее обоим типам полимеров и низкомолекулярным веществом. Однако в случае полимеров это явление выражено более ярко из-за длинноцепной природы полимерной молекулы и наличия сильных межцепных взаимодействий. Как правило, кристаллические полимеры ниже их температуры плавления в большинстве растворителей не растворяются. [c.270]

    Весьма интересной особенностью полимеров является способность перехода в промежуточное (мезофазное) по отношению к жидкому и твердому состояниям жидкокристаллическое фазовое состояние. Оно характеризуется вполне определенными исходными структурой и физическими свойствами, а также способностью их быстрого изменения под влиянием внешних воздействий. Жидкие кристаллы, с одной стороны, обладают высокой пластичностью (легко переходящей в текучесть), а с другой стороны, обнаруживают характерную для твердых веществ спонтанную оптическую анизотропию. [c.30]

    Фазовые состояния. Полимеры могут существовать в кристаллическом, жидком (аморфном) и жидкокристаллическом (аморфнокристаллическом.) фазовых состояниях, различающихся степенью упорядоченности частей макромолекул в структуре полимера. При этом кристаллическая и аморфная фазы в полимере находятся в состоянии термодинамического равновесия  [c.374]

    Фазовое состояние определяется только способом упаковки атомов или молекул (в случае полимеров макромолекул или определенных структурных элементов — структонов). Обычно способ упаковки можно характеризовать степенью порядка или типом симметрии. Важнейшими фазовыми состояниями полимеров являются кристаллическое, аморфное (структурно жидкое) и жидкокристаллическое. [c.320]

    Выяснение механизма усиливающего действия наполнителей имеет большое значение для направленного улучшения физикомеханических свойств наполненных материалов. Механизм усиливающего действия наполнителей в пластмассах и резинах различен, поскольку последние в условиях эксплуатации находятся в вы-сокоэластическом состоянии. Следует также иметь в виду, что механизм усиления полимеров нельзя объяснить с какой-либо одной точки зрения. Для его понимания необходимо учитывать все факторы, влияющие на свойства материала химическую природу полимера и наполнителя, тип наполнителя (дисперсный, волокнистый, тканый и пр.), фазовое состояние полимера, адгезию полимера к поверхности, условия формирования наполненного полимера из раствора или распл ава или условия отверждения жидкого связующего, условия вулканизации и т. д. [c.251]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    В структурном отношении вязкотекучее состояние, несмотря на значительную подвижность сегментов и макромолекул, является достаточно организованным. В жидком (вязкотекучем) состоянии полимеров, как и в низкомолекулярных жидкостях, возможно образование флуктуационных структур, обладающих большим временем жизни, размерами, химическим составом и строением макромолекул. Известно, что в расплавах кристаллизующихся полимеров при температуре выше температуры плавления могут существовать упорядоченные об пасти, подобные кристаллическим структурам, образующимся при охлаждении данного расплава. В аморфных полимерах такое структурное сходство в вязкотекучем, высокоэластическом и стеклообразном состояниях проявляется еще ярче. Степень упорядоченности меняется с температурой, но при любой температуре образующиеся структуры носят флуктуационный характер, поэто1му все они могут быть отнесены к одному жидкому фазовому состоянию, хотя но агрегатному состоянию они относятся к двум агрегатным состояниям — тве,рдо му и жидкому. [c.80]

    В заключение необходимо отметить, что понятие фазовое состояние, несмотря на почти тождественную с принятой для обозначения А. с. терминологию [различают твердые (кристаллические), жидкие и газовые фазы], основано на совершенно другом иринципе, поскольку представление о фазовом состоянии имеет тер-модинамич. происхождение. Различие в понятиях агрегатного и фазового состояний хорошо иллюстрируется тем, что стеклообразные полимеры, независимо от степени их молекулярной упорядоченности, находятся в твердом агрегатном, но в жидком фазовом состоянии. [c.11]

    Вернемся теперь к рис. 10 и посмотрим, какие непосредственные сведения о структуре системы полимер—растворитель можно почерпнуть из анализа этой фазовой диаграммы. Прежде всего будем подниматься от более низких к более высоким температурам вдоль оси ага = 1. Если полимер аморфный, он последовательно проходит через все три релаксационных ( физических состояния стеклообразное, высокоэластическое и вязкотекучее. Они представляют собой разновидности жидкого фазового состояния с раз ][ичной степенью, замороженности сегментальной подвижности цепей. Все это хорошо известные вещи, но о них иногда забывают при рассмотрении фазовых равновесий. В сущности, для системы аморфный полимер—растворитель всегда реализуется фазовое равновесие типа жидкость—жидкость (ибо, говоря о равновесии, мы должны принимать во внимание именно фазовое, а не релаксационное состояние той или иной двухкомпонентной фазы. При достаточно высокой температуре, но ниже ВКТС, раствор вероятнее всего распадается на два обычных раствора различной концентрации. Нередко, используя такое разделение на две жидкие фазы для фракционирования (практически в этом случае чаще варьируется растворитель, но вскоре мы убедимся, что в принципе это ничего не меняет), говорят об образовании коацервата — из-за внешней аналогии с коацервацией в амфифильных электролитных системах. [c.103]

    Деструкция полиметилметакрилата при 25 "С за 45 мин приводит к снижению молекулярного веса с 5-10 до 3,3-Ю без отщепления низкомолекулярных продуктов. Аналогичная деструкция при —85°С приводит к снижению молекулярного веса до 5,5-10 и отщеплению до 10% жидкого мономера, который был идентифицирован по его ИК-спектру, а также масс-спектроскопически (рис. 18). Причину столь эффективной деполимеризации авторы усматривают в особенности фазового состояния полимера и мономера, а именно в том, что процесс идет при температуре ниже точки плавления мономера в прнсутстаии стеклообразного поли- [c.66]

    В отличие от низкомолекулярных соединений полимеры существуют только в конденсированных афегатных состояниях жидком и твердом. Однако фундаментальное свойство высокомолекулярных соединений - гибкость макромолекул - обусловливает возможность реализации различных способов взаимной упаковки полимерных цепей и, следовательно, разнообразие фазовых состояний. [c.122]

    При нагревании или охлаждении один и тот же полимер может переходить из одного физического состояния в другое. Например, полиизобутилеи при комнатной температуре находится в высокоэластическом состоянии, но при нагревании может быть переведен в вязкотекучее, а при охлаждении — в стеклообразное. Все три физических состояния аморфных полимеров необходимо строго отличать от фазовых состояний — кристаллического и жидкого, В зависимосри от температуры и условий механического воздействия аморфный полимер всегда пребывает в одном из физических состояний и способен переходить из одного состояния в другое без скачкообразных изменений термодинамических свойств. Следовательно, во всех физических состояниях аморфного полимера его фазовое состояние будет одним и тем же, т. е. он является жидкой фазой. [c.383]

    Упомянутые идеализированные варианты были использованы прнменлтельно к полимерам, которые в покое были скорее в стеклообразном, нежели структурно-жидком деформационном состоянии. В принципе, определенные удобства для разделения вязких и высокоэластических составляющих деформаций и соответственно зондирования релаксационного спектра представляет невулкани-зованные или недовулканизованные каучуки. (Конечно, при этом приближение к вязкому течению осуществляется со стороны высокоэластического состояния). В этом случае при достаточно широком диапазоне изменения Р (или растягивающего напряжения) удается довольно существенно менять и у. не попадая в экстремальные условия, когда начинают работать термокинетические эффекты структура сетки меняется при этом не слишком сильно, а механизмы прекращения течения не связаны с фазовыми превращениями. Особенно удобны опыты такого рода (течение каучуков через патрубки) для наблюдения высокоэластической турбулентности. Однако указанные системы не находятся в типичном вязкотекучем состоянии и потому здесь не рассматриваются. [c.183]


Смотреть страницы где упоминается термин Жидкое фазовое состояние полимеро: [c.16]    [c.23]    [c.81]    [c.352]    [c.73]    [c.80]    [c.352]    [c.23]    [c.174]    [c.270]    [c.432]    [c.242]   
Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.232 ]

Основы химии высокомолекулярных соединений (1961) -- [ c.173 , c.194 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкие полимеры

Полимер три состояния

Состояни жидкое

Состояние жидкое

Фазовые состояния



© 2025 chem21.info Реклама на сайте