Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламя в газах проскок

    Обычно в факеле должно постоянно гореть дежурное пламя, которое в любое время может поджечь газовую смесь, поступающую на факел. Для зажигания дежурного пламени при пуске факела или после его погасания предусматривается запальное устройство. Для нормальной работы факельного устройства необходимо постоянное наблюдение за работой дежурной горелки, что обеспечивается соответствующей сигнализацией. Пламя газа, сжигаемого на факеле, должно быть стабильным и устойчивым. Проскок пламени в трубу факела, как и его отрыв, недопустимы. Подобные явлении возможны только при нарущениях технологического режима или из-за неправильной конструкции факел 3. [c.133]


    У газовых горелок при неправильном пользовании ими иногда наблюдается проскок пламени , т. е. газ загорается не у выхода из трубки горелки, а внутри этой трубки. У -горелки с проскочившим пламенем наблюдается характерный свистящий шум, пламя вырывается узким столбом, иногда окрашенным в зеленый цвет, если трубка горелки сделана нз медного сплава. Такую горелку нужно немедленно погасить, а раскаленную трубку и станину охладить мокрой тряпкой, меняя ее несколько раз, пока горелка совершенно не остынет. Пользоваться вновь этой горелкой можно только после того, как она полностью остынет. [c.73]

    При зажигании горелки с полной подачей воздуха может наблюдаться проскок пламени в горелку. Горелка начинает работать с характерным гудением, дает светящееся пламя и сильно разогревается, что может привести к ожогам и возгоранию трубок, подводящих газ. В таком случае необходимо закрыть газовый кран и, после остывания горелки, вновь ее зажечь, предварительно прикрыв подачу воздуха. [c.15]

    Смесительную трубу горелки Бунзена можно располагать не только вертикально, но и под наклоном и даже горизонтально. Инжекция газом осуществима в любом положении. Воздушные отверстия и жалюзи могут иметь постоянные или переменные размеры. Расход газа меняется в широких пределах, однако установлено, что слишком маленькие расходы газа и воздуха приводят к проскоку пламени, т. е. пламя с головки горелки уходит внутрь смесительной трубки, опускается вниз и горит на срезе инжектирующего сопла. Чрезмерный расход газа приводит к отрыву пламени от горелки. Вероятность проскока и отрыва пламени можно уменьшить, разбив выходное отверстие горелки на более мелкие отверстия. [c.102]

    Газовые горелки должны быть исправными. При неисправности горелок в помещение лаборатории может попасть газ Необходимо также тнг тельно регулировать пламя газовых горелок. При малом давлении газа н большом притоке воздуха в горелку газ иногда загорается внутри горелки. При этом пламя над горелкой ослабевает и вытягивается. Это явление называется проскоком пламени. При проскоке пламени газ не успевает должным образом смешаться с воздухом, вследствие чего понижается температура пламени, происходит неполное сгорание газа и он отравляет воздух в помещении. [c.41]

    На рис. 30.20 приведена принципиальная схема пламенного спектрофотометра. Одной из основных частей пламенного фотометра или спектрофотометра являются распылители и горелки. В пламенной фотометрии применяют горелки двух типов нераспыляющие (ламинарные) и распыляющие (турбулентные). Нераспыляющие горелки имеют внешнюю распылительную систему. Образуемые в ней аэрозоли вместе с газом-окислителем подаются в конденсационную камеру — смеситель, где смешиваются с горючим газом и затем попадают в пламя горелки. В комбинированных горелках-распылителях окислителя применяют кислород. Для стабилизации режима горения таких горелок необходимо увеличивать скорость истечения газов из сопла горелки, что делает поток газов турбулентным. В горелках такого типа анализируемый раствор втягивается газом-окислителем в капилляр и затем распыляется в реакционную зону пламени. Существенной частью нераспыляющих горелок являются их наконечники с тонкой защитной сеткой или щелевые, обеспечивающие равномерное горение пламени без проскока его в корпус горелки. [c.695]


    В случае использования предварительно приготовленных смесей воздуха и природного газа проскок можно было устранить, устанавливая лопасти с помощью диска диаметром 125 мм, в результате чего возрастала скорость газа между лопастями. Полученные нами пламена очень напоминали пламена, полученные ранее в работе [1]. В этой работе использовалась циклонная установка несколько меньших размеров, в которой, вероятно, создавалось более интенсивное поле циклонных потоков. При молярных отношениях воздуха и природного газа больше 7 1 пламена в туннеле стабилизировались в форме полых цилиндров, простирающихся до задней стенки вихревой камеры, и выступали из выходного отверстия туннеля. Наиболее интенсивным цвет пламени, как правило, был при соотношении воздух/газ порядка 9. При больших соотношениях интенсивность пламен уменьшалась, и они уменьшались по диаметру и длине. При соотношениях, равных примерно 12 1 — 15 1, пламена срывались. Перед самым срывом пламена становились весьма неопределенными и образующиеся в них продукты сгорания были сравнительно холодными. [c.377]

    В инжекционных горелках для смешения топлива с воздухом используется инжекционное действие газа, быстро вытекающего из сопла в смеситель. В промышленных печах чаще используются горелки среднего давления с давлением газообразного топлива 1,3—3 ama. В этих горелках инжектируется 80—100% воздуха, необходимого для горения (в соответствии с требуемой длиной пламени). Так как в камеру сгорания поступает хорошо подготовленная смесь газа с воздухом, то она быстро сгорает с образованием короткого и несветящегося пламени. Пламя можно получить еще более коротким или вообще устранить его путем пропускания смеси газа и воздуха через узкие отверстия или щели керамической вставки у устья горелки. Поверхность керамической вставки со стороны печи раскалена до высокой температуры, при которой смесь очень быстро сгорает. Газ горит только вблизи поверхности керамической вставки, так как теплопроводность этого материала настолько мала, что смеси, протекающей через щели со скоростью большей, чем скорость распространения пламени (в результате чего не может произойти проскока пламени в смесительную камеру), достаточно, чтобы охладить щели до температуры ниже температуры воспламенения. Оба типа этих горелок приведены на рис. А, Б. У некоторых новейших типов этих горелок используется пористый керамический материал, в котором поры выполняют функцию отверстий. [c.40]

    Метан и кислород подогревают раздельно до 600°. Эти газы смешиваются в головке форсунки затем скорость газов уменьшается, так как камера смешения постепенно расширяется. Форсунка представляет собой керамический блок со многими цилиндрическими каналами, из которых смешанные газы вытекают с такой скоростью, что проскок пламени или взрыв невозможны. При этом образуется плоское пламя толщиной в несколько сантиметров. Вследствие высокой скорости газов реакционная смесь после пламенной зоны вполне однородна. Температура газовой смеси достигает 1400° эту смесь моментально охлаждают до 80°, впрыскивая в нее воду. Продукты реакции имели следующий приближенный состав (в объемных процентах)  [c.278]

    Большой избыток воздуха при зажигании горелки и во время пользования ею может привести к проскоку пламени. Сильно накалившаяся вследствие проскока пламени горелка может вызвать воспламенение резиновой трубки, подводящей газ, пожар и взрыв. Если пламя проскочило , надо немедленно закрыть газовый кран, дать горелке остыть и после этого вновь зажечь ее с соблюдением предосторожностей, указанных выше. [c.6]

    Если пламя имеет вид сильно вытянутого конуса с зеленой окраской, это означает, что дан сильный ток воздуха при малом токе газа и горение идет внутри трубки 6 (см. рис. 1) у отверстия (проскок пламени). Горелку в таком случае нужно погасить, дать ей охладиться,, закрыть диском доступ воздуха и снова зажечь ее. [c.6]

    Если скорость истечения газовой смеси из сопла приблизительно равна скорости распространения фронта пламени, мы получим стабильное горение (рис. 79, а). Если скорость истечения выше, чем скорость горения, то пламя сорвется с горелки и будет гореть на некотором расстоянии от среза сопла (рис. 79, б) или вообще исчезнет. Если скорость истечения газов меньше скорости горения, то пламя затягивается внут ь ( проскок ). [c.126]

    При зажигании горелки и удалении запальника в некоторые смесители может произойти проскок пламени и горение газа будет происходить внутри них. Для устранения этого явления наружные торцы смесителей, внутри которых горит газ, следует поочередно перекрыть на несколько секунд несгораемым предметом, например асбестовой пластинкой. При прикрытом торце пламя из трубки-смесителя выносится в топку и при нормальной [c.193]

    Амос и Томас показали, что алюминий удобно определять в пламени кислород — ацетилен — азот, причем присутствие азота уменьшает скорость сгорания смеси, снижая тем самым потенциальную возможность проскока пламени, без заметного снижения его температуры. Авторы обнаружили также, что замена в пламени азота аргоном не изменяет чувствительности определения. Уиллис [83] исследовал температуру и скорость распространения различных пламен, используя в качестве окислителей окислы азота, а в качестве горючего — ацетилен. Согласно литературным данным, различные комбинации этих газов дают почти такую же температуру, как у оксиацетиленового пламени, а скорость распространения, как у смеси воздух — ацетилен. Некоторые из этих данных помещены в табл. ИЛ. Выдающийся успех был достигнут при использовании закиси азота. Сейчас имеется возможность получить достаточную чувствительность при определении любого металла, работая с пламенем столь же безопасным, как пламя воздух — ацетилен. Следует отметить, что многие значения чувствительности и пределов обнаружения (см. табл. П1. 1 на стр. 54) были получены с пламенем закись азота — ацетилен. [c.38]


    В конструкциях всех устройств для сжигания топлива с полным перемешиванием газа и воздуха до входа в горелочный туннель есть общие черты. Для предотвращения обратного удара (проскока) пламени в горелку горящая смесь должна входить в печное пространство со скоростью, большей скорости распространения пламени. Чем больше скорость струи горючей смеси, 7ем больше расстояние точки воспламенения от устья горелки, если не предусмотрены средства для торможения всего или части потока. Горение начинается в той точке струи, где ее скорость равна скорости распространения пламени, при условии, что температура смеси газа и воздуха равна или выше температуры воспламенения. Если эта точка расположена в устье горелки (предельный случай), пламя может проскочить в горелку. [c.72]

    Измерение скоростей затруднительно, особенно в горелке, направленной в печь. Изготовители горелок обошли это затруднение следующим образом. Для каждой горелки существует определенное отношение между скоростью газа и падением давления в ней. Это положение относится и к горелкам с предварительным смешением и к турбулентным. Если на испытательном стенде горелка работает некоторое время с нормальной мощностью, то, повышая давление и увеличивая расход газа и воздуха, достигают давления, при котором пламя гаснет при испытании на открытом воздухе или выносится из горелочного блока, если горелка направлена в горящую печь. Наоборот, если напор перед горелкой постепенно снижается, то при определенной величине в горелках предварительного смешения получается проскок пламени, а в турбулентных горение проникает в сопло. [c.86]

    Когда воздух и природный газ смешивали до впуска в циклонное сопло, возникала тенденция к проскоку пламени и начиналось горение перед лопастями и между ними. Проскок приводил к очень быстрому нагреванию установки, и она могла повреждаться, если бы пламена не гасли. Если через лопасти вводили только воздух, а газ подавали через аксиальную трубку диаметром 3 мм, то проскока не происходило. [c.377]

    Чаще всего проскок происходит при повышении содержания воздуха в смеси. В этом случае следует прежде всего закрыть газовый кран, чтобы потушить пламя, и затем отрегулировать горелку так, чтобы уменьшить доступ воздуха или соответственно увеличить приток газа. [c.12]

    Нужно следить, чтобы не было проскока пламени внутрь горелки. Следует объяснить учащимся большую опасность проскока пламени горелка сильно раскаляется, а это приводит к загоранию после проскока пламя может погаснуть и газ проникнет в помещение. В случае проскока пламени нужно немедленно закрыть газовый кран, дать горелке остыть, уменьшить подачу воздуха (вращением диска или муфты) и снова зажечь горелку. [c.24]

    Обратный проскок пламени можно предотвратить, подобрав такие размеры каналов в горел очном блоке, при которых скорость газа превышает скорость распространения пламени. Смесь газов можно подать в зону горения только в том случае, если линейная скорость поступающего потока меньше скорости тушения потока, т. е. скорости, при которой пламя отрывается. Скорость тушения потока зависит от диаметра канала, по которому проходит смесь газов. Экспериментальные данные показывают, что скорость тушения быстро уменьшается с увеличением диаметра канала (в тех случаях, когда диаметр не превышает 10 мм). При диаметрах более 10 мм отверстие канала оказывает небольшое влияние. Скорость тушения в этом случае составляет 10,05—10,66 м/сек. В старых конструкциях горелочного блока газовые каналы имели максимальный диаметр 10 мм, в более новых эта величина достигает 20, а иногда и 35 мм. [c.150]

    Подачу воздуха регулируют поворотом диска (или муфты), следя за тем, чтобы пламя перестало коптить, горело без шума и не было проскока пламени. Если пламя все же проскочило , необходимо прекратить подачу газа закрыв газовый кран, дождаться, пока горелка [c.9]

    Как правило, горелки с предварительным смешением могут работать без засорения с растворами, содержащими несколько процентов твердого вещества. Засорение при более высоком содержании твердых веществ происходит в результате осаждения материала на горячей прорези, откуда выходят газы пламени. Если расширить прорезь, засорение уменьшается, но возрастает опасность обратного проскока пламени. Некоторые исследователи применяли низкотемпературные пламена, чтобы использовать более широкую щель. В нашей работе с воздушно-ацетиленовыми пламенами в 10-сантиметровой горелке максимальная безопасная ширина щели составляла 0,63 мм, однако, этот размер зависел от применяемой скорости потока газа. Растворы, содержащие до 5% твердых веществ, создавали в этой горелке очень небольшое засорение. [c.35]

    Многие авторы указывают, что проскок пламени можно предотвратить, если пропускать газы через длинную узкую металлическую трубку. Эгертон, Эверетт и Мур 82] использовали пробку из пористого металла, через которую проходят горючие газы, но не может проскочить оксиацетиленовое пламя. [c.38]

    Усовершенствование существующих горелок с принудительной подачей воздуха шло в двух основных направлениях а) усовершенствование головок горелок предварительного смешения для предотвращения проскока пламени и повышение устойчивости пламени путем создания небольших дежурных пламен, стабилизирующих основные пламена, за счет соответствующей конструкции головки и б) изменение конструкции проточной части сопел инжектора, через которые поступает первичный воздух на предварительное смешение с газом, с целью понижения уровня шума. [c.577]

    При зажигании горелки с открытым поддувалом возможен проскок пламени в горелку. Проскочившее пламя имеет особый вид и форму. Горелка при этом сильно накаливается, что может привести к опасным последствиям загорание подводящего газ каучука, порча стола, ожог руки. Кроме того, происходит неполное сгорание газа — образуется много окиси углерода. Проскок пламени может произойти в процессе работы. Если пламя проскочило, необходимо закрыть газовый кран, дать горелке охладиться и вновь зажечь ее так, как указано выше. [c.14]

    Если скорость газовоздушной смеси в направлении, нормальном к поверхности конуса горения, станет ниже скорости распространения пламени, то произойдет обратный удар, и пламя проскочит через огневые отверстия внутрь горелки. Обратный удар (проскок) пламен является недопустимым в эксплуатации явлением, т. к. приводит к горению смеси внутри горелки, ее нагреву, нарушению инжекции первичного воздуха и неполноте сгорания газа. Обратный удар пламени обычно сопровождается хлопком с последуюш,им шумом при горении газовоздушной смеси внутри горелки. Во многих случаях горение при хлопке может прекратиться, и в топку или в помещение будет выходить несгоревший газ [4]. [c.299]

    Проскок пламени нужно ликвидировать перекрытием крана, подводящего газ к горелке. Затем надо дать остыть горелке, завернуть диск до отказа, открыть газ, поджечь его и отрегулировать пламя. [c.12]

    Количество первичного воздуха в газовоздушной смеси является одним из основных факторов, влияющих на скорость распространения пламени. В смесях, в которых содержание газа превышает верхний предел его воспламеняемости (взрываемости), пламя вообще не распространяется. С увеличением количества первичного воздуха в смеси скорость распространения пламени увеличивается, достигая наибольшей величины при содержании воздуха около 90% от теоретически необходимого. Из этого следует, что при увеличении подачи первичного воздуха в горелку создается смесь, более бедная газом, способная гореть быстрее и вызвать проскок пламени внутрь горелки. Поэтому при увеличении нагрузки горелок увеличивается сначала подача газа, а затем воздуха, а при уменьшении нагрузки наоборот. По этой же причине в момент зажигания горелок первичный воздух не должен в них поступать, горение сначала идет за счет вторичного воздуха и по мере увеличения нагрузки горелок в них подают первичный воздух. [c.150]

    Проскок пламени может получиться и в процессе работы. Обычно при проскоке слышится характерный хлопок, пламя делается узким и приобретает зеленую окраску (если трубка горелки медная), трубка горелки сильно нагревается и появляется неприятный запах продуктов неполного сгорания светильного газа. [c.12]

    В обычных условиях после смешения с воздухом метан горит спокойно едва светяш,имся пламенем. При недостаточном притоке воздуха газ горит коптящим светящимся (восстановительным) пламенем. Сгорание газа при этом неполное. Но если отверстия для пуска воздуха, открыты полностью и приток воздуха оказывается слишком большим по сравнению с подачей горючего газа, то может произойти проскок пламени газ загорается внутри горелки — раздается свистящий звук, пламя над трубкой исчезает или вытягивается и становится цветным (в случае медных частей горелки — зеленым ), горелка сильно разогревается и даже накаливается, резиновый шланг может загореться вызвать пожар. Для ликвидации проскока нужно немедленно закрыть газовый кран, охладить горелку и только после этого снова зажечь газ, предварительно v lvreньшив доступ воздуха. [c.53]

    Если в горелку поступает слишком много воздуха (диск 3 далеко отстоит от корпуса 4), при зажигании горелки пламя может проскочить , т. е. газ будет сгорать не по выходе из горелки, а внутри нее. При этом верхняя, выходящая из горелки часть пламени также окрашена в оранжевый цвет (иногда пламени вообще не видно). В этом случае надо перекрыть рожковый кран, дождаться, пока в горелке догорят остатки газа, дать горелке охладиться, а затем повернуть диск 3 ближе к конусу горелки 4 и снова ее зажечь. Если проскок пламени обнаружен несвоевременно, корпус горелки раскалится и прикосновение к нему вызывет сильные ожоги рук. [c.284]

    Наличие хлопка указывает на то, что в смесителе горелки образовалась взрывчатая газовоздушная смесь, которая при зажигании мгновенно воспламенилась, и пламя распространилось против движения газа, вытекающего из горелки. Проскок происходит в том случае, когда скорость истечения газовоздушной смеси из горелки меньше скорости распространения пламени. Практически явление проскока происходит тогда, когда у инжекционной горелки низкого или среднего давления при зажигании остался полностью открытым регулятор воздуха, а газ поступает в горелку в недостаточном количестве и, следоватетльно, с малой скоростью. Явление проскока пламени может возникать и у горящей горелки, например, при внезапном снижении ее производительности. Производительность горелки может упасть при резком уменьшении подачи газа, например, вследствие быстрого падения давления газа в газопроводе. Проскок может также произойти в момент выключения инжекционной горелки при открытом регуляторе воздуха, особенно тогда, когда горелка перегрета. [c.88]

    Хотя приведенное выше описание является до некоторой степени упрощенным, в нем отражены существенные характеристики процесса стабилизации пламени телами илохообтекаемой формы. К ним относятся следующие характеристики 1) наличие зоны рециркуляции 2) размер зоны рециркуляции, а также температура, скорость и концентрация активных частиц в горячих газах в этой зоне должны быть такими, чтобы втекающая в эту зону свежая горючая смесь воспламенялась и реагировала настолько быстро, чтобы зона рециркуляции находилась в условиях, необходимых для последующего зажигания 3) распространение пламени, которое может быть инициировано в зоне рециркуляции 4) независимо от того, угаснет ли в зоне рециркуляции иламя до того, как распространится по всей смеси, или оно вообще не будет инициировано, химическая реакция и перенос количества движения, тепла и массы на границе горючей смеси и продуктов сгорания, вытекающих из зоны рециркуляции, должны быть такими, чтобы смесь воспламенялась ниже ио потоку, инициируя таким образом другое пламя, способное распространиться по всей камере сгорания 5) распространение пламен должно происходить так, чтобы не нарушался указанный выше механизм инициирования пламени очевидно, что проскок пламени будет нарушать этот механизм. [c.90]

    Газовый краник с наконечником для щланга, подводящего газ к горелке, имеется на каждом рабочем месте. Наибольщим распространением в производственных и учебных лабораториях пользуются газовые горелки Теклю и Бунзена. Нужно показать учащимся детали горелок, объяснить их назначение, научить их правильно зажигать горелку и регулировать пламя. Следует показать, каким образом возникает проскок пламени горелки и как надо его ликвидировать. Эти приемы должен по нескольку раз воспроизвести каждый учащийся, и только после этого его можно допустить к работе с газовой горелкой. Далее следует познакомить учащихся с расположением кранов, перекрывающих отдельные газовые линии (если таковые есть), и главного крана на вводе газа в лабораторию. [c.32]

    То, что К в предыдущем примере считается равным единице, следует из экспериментальных данных и интуитивных предпосылок, о которых упомянуто выше. Дальнейшие уточнения были бы возможны, если бы был найден метод определения отношения в числе Карловитца независимым способом. Нам кажется, что для этого потребуется определить относительную ширину зоны подогрева и зоны реакции в волне, характеризуемой отношением Ть — Т—Ти). Это позволило бы с более общих позиций подойти к теории расстояния гашения (в том числе для различных геометрических конфигураций, таких, как плоскопараллельные пластинки и цилиндрические трубки) и глубины проникновения при гашении одной поверхностью, измеряемых при помощи отношения SugF, где gp — критический градиент скорости при проскоке пламени [2]. Этот вопрос подробно рассмотрен в нашей книге Горение, пламя и взрывы в газах , 1951 г. Как нам кажется, из изложенного выше следует, что уточненная концепция растяжения пламени могла бы заменить идеальную, но очень сложную теорию, основанную на детальном описании переноса тепла и процессов химической кинетики. [c.598]

    Австралийские исследователи Амое и Томас [76] модифицировали обычную воздушно-ацетиленовую горелку с целью обогатить пламя кислородом. Когда содержание кислорода повышается, трудно предотвратить проскок пламени в смесительную камеру. Ученые пошли на некоторый риск (и на разрушение целого ряда горелок), но сумели свести к минимуму обратный проскок пламени и получили сильные абсорбционные сигналы для растворов алюминия. Маннинг [81], ободренный их успехом, изменил конструкцию горелки с предварительным смешением, применив в ней водяное охлаждение и использовав длинные тонкие металлические трубки, из которых смешанные газы поступали в пламя. При помощи этоГО устройства можно получать чистые окснацетиленовые пламена с предварительным смешением газов. [c.37]

    Пламена предварительно смешанных газов принято характеризовать скоростью пламени, т. е. скоростью распространения фронта пламени в негорящую смесь топлива с воздухом. Величина этой скорости зависит преимущественно от состава горючей смеси, температуры и давления. В том случае, когда пламя стабилизировано на горелке, скорость фронта пламени может превышать скорость газовоздушного потока, и тогда возникает опасность проскока пламени в подаваемую смесь. Диффузионное пламя не способно к проскоку . (Подробное обсуждение структуры различных пламен можно найти в монографии [2]). [c.556]

    Размеры запальных отверстий должны обеспечивать устойчивость запального пламени в отношении проскока. Конструктивно запалы выполняются в виде щелей, каналов различной формы, латунных сеток, разбивающих поток на отдельные мелкие струи с целью создания равномерного и устойчивого запального пламени. Для газов с большой теплотой сгорания и низкой скоростью распространения пламени иногда применяют двухступенчатые запалы. В этом случае пламя первой ступени поджигает струю горючей смеси, выходящей из второй ступени, расположенной ближе к основному отверстию. Теплота, вьвделяемая пламенем первой ступени, идет на подогрев горючей смеси, вытекающей из второй ступени. Тем самым скорость распространения пламени смеси, вытекающей из второй ступени запала, повышается. Это способствует увеличению предела устойчивого горения в горелке в отношении отрыва пламени и расширения диапазона регулирования ее тепловой мощности. [c.219]

    Пламя в горелках частичного внутреннего смешения менее устойчиво, чем в диффузионных, и поэтому они менее безопасны и требуют большего внимания со стороны обслуживающего персонала. Под неустойчивостью пламени понимается способность его отрываться от горелки или проскакивать внутрь нее. В нервом случае возможно загазование топки и дымоходов агрегата, вследствие того что горение прекратилось, а поступление газа в топку продолжалось. При последующем розжиге горелки и внесении в топку или газоходы открытого огня или нопадании в них искры может произойти взрыв. При проскоке пламени газ будет гореть внутри горелки, отчего она быстро нагреется и может быть выведена из строя. Кроме того, горение газа внутри горелки будет неполным, с большим образованием сажи, что также может привести к загазованию топки и дымоходов. При проскоке возможно также затухание горелки. [c.149]


Смотреть страницы где упоминается термин Пламя в газах проскок: [c.104]    [c.23]    [c.81]    [c.85]    [c.11]    [c.56]    [c.362]    [c.12]   
Производства ацетилена (1970) -- [ c.166 , c.167 , c.188 , c.193 ]




ПОИСК





Смотрите так же термины и статьи:

Пламени проскок



© 2025 chem21.info Реклама на сайте