Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Момент

    При промывке толщина осадка не меняется, поэтому скорость промывки остается постоянной и равной той скорости, которая была в самый последний момент фильтрации. [c.37]

    При увеличении линейной скорости потока подъемная сила, действующая на каждую частицу, станет больше, чем масса частицы, и слой начнет расширяться. По мере расширения слоя увеличивается его пористость и уменьшается скорость в норовых каналах меладу частицами, вследствие чего подъемная сила потока будет уменьшаться, и в тот момент, когда она опять станет равной массе частицы, дальнейшее расширение прекратится. [c.70]


    Продолжая свои опыты, Лавуазье нагревал в закрытых сосудах с ограниченным объемом воздуха такие металлы, как олово и свинец. Сначала на поверхности обоих металлов образовывался слой окалины, но в определенный момент ржавление прекращалось. Сторонники теории флогистона сказали бы, что воздух поглотил из металла весь содержащийся в нем флогистон. В то время уже доподлинно было известно, что окалина весит больше, чем сам металл однако, когда после нагревания Лавуазье взвесил сосуд вместе со всем содержимым (металлом, окалиной, воздухом и пр.), оказалось, что он весит ровно столько же, сколько и до нагревания. [c.46]

    И тем не менее с момента открытия закона Пруста существовали серьезные сомнения в его справедливости. В конце концов, почему закон постоянства состава всегда должен быть справедлив Почему какое-то соединение всегда должно содержать 4 части л и 1 часть у, и почему оно не может содержать, например, 4,1 или 3,9 части х и 1 часть у Если допустить, что материя является сплошной (а не дискретной), то понять это трудно. Почему элементы не могут смешиваться в несколько иных пропорциях  [c.55]

    Вплоть до настоящего момента мы последовательно излагали факты, четко следуя за развитием событий, но в этой и следующей главах мы рассмотрим несколько отдельных достижений, благодаря которым химия начала служить человечеству. При этом мы несколько отклонимся от главного пути развития химии. В последующих трех главах мы вновь вернемся к принятой нами схеме изложения. [c.124]

    Предположим, что с одной стороны разделяющей перегородки находится чистая вода, а с другой — коллоидный раствор. Молекулы воды могут свободно проникать через перегородку в оба отсека. В первый момент в отсек с коллоидным раствором будет попадать большее число молекул воды, чем покидать его, поскольку выравнивание концентраций по обе стороны перегородки — самопроизвольный энергетически выгодный процесс. Суммарный поток молекул воды в отсек с коллоидным раствором будет продолжаться до тех пор, пока возникающая разность давлений жидкости с обеих сторон перегородки не достигнет определенной величины. Величина этого давления, приводящего к вынужденному равновесию, называется осмотическим давлением раствора.  [c.128]

    Бессемер начал искать такой способ производства стали, который позволил бы исключить дорогостоящую стадию получения сварочного железа. Чтобы удалить избыточный углерод из чугуна, он пропускал через расплавленный металл струю воздуха. Металл при этом не охлаждался и не затвердевал наоборот, в результате реакции углерода с кислородом выделялось тепло, и температура расплава повышалась. Прекращая в соответствующий момент подачу воздуха, Бессемер смог получить сталь (рис. 19). [c.138]


    В течение первой четверти XX в., с момента открытия электрона, считалось доказанным, что электрон представляет собой очень маленький жесткий шарик. Однако в 1923 г. французский физик Луи Виктор де Бройль (род. в 1892 г.) представил теоретическое обоснование того, что электроны (а также и все другие частицы) обладают волновыми свойствами. К концу 20-х годов XX в. эта гипотеза была подтверждена экспериментально. [c.161]

    Хотя с момента открытия инертных газов считалось, что они ни в какие реакции не вступают, в 1932 г. Полинг высказал предположение, что атомы этих газов должны образовывать связи. [c.163]

    Трудностей оказалось очень много. Прежде всего выяснилось, что цепная ядерная реакция возможна лишь при наличии некоторой довольно большой массы урана — так называемой критической массы. К моменту же начала работ ученые располагали незначительным количеством урана, так как до )Й0 г. уран как таковой почти не применялся. Кроме того, нейтроны необходимо было замедлять с тем, чтобы вероятность их поглощения ураном увеличилась. В качестве таких замедлителей, как выяснилось. [c.177]

    Ацетальдегид — пример вещества, которое образуется в человеческом организме, но всегда присутствует в нем лишь в очень малых количествах, потому что, только что образовавшись, тут же превращается в другие вещества вещество А превращается в ацетальдегид, а потом ацетальдегид превращается в вещество Б. Поскольку ацетальдегид заполняет промежуток между этими двумя вещества, его называют промежуточным продуктом метаболизма. И хотя в организме могут образовываться и потом распадаться большие его количества, в каждый данный момент его там очень мало. [c.123]

    Организмы животных тоже могут запасать глюкозу, когда она находится в избытке. Крахмал, содержащийся в пище, в кишечнике гидролизуется до глюкозы, которая и усваивается организмом. Съев обычный обед, человек усваивает гораздо больше глюкозы, чем ему в данный момент нужно. И вот излишки глюкозы конденсируются в особый вид крахмала — гликоген, или животный крахмал. Он запасается в мышцах и коже, а больше всего 1в печени. У хорошо упитанного взрослого человека запасы гликогена в организме могут достигать 350— 400 граммов. [c.146]

    Но превращение глюкозы в молочную кислоту — это тупик. Молочная кислота больше ни во что не превращается, а только накапливается. И чем ее больше, тем сильнее наши мышцы ощущают усталость. Наконец, наступает момент, когда они больше не в состоянии работать в них слишком много молочной кислоты. [c.174]

    Один из самых распространенных сложных эфиров этилацетат, уксусноэтиловый эфир. Его запах напоминает аромат груш, но немного резче его и не совсем похож на фруктовый. С этим эфиром хорошо знакомы женщины этилацетат растворяет лак для ногтей и входит в состав жидкости для снятия лака. Если вы когда-нибудь ею пользовались, вы знаете, как пахнет этилацетат знает это и всякий, кто в этот момент находился в одной комнате с вами. В промышленности этилацетат (температура его кипения 77 ""С) используется как важный растворитель и для других веществ, кроме лака для ногтей. [c.186]

    Такие превращения приносят большую пользу химикам. Представьте себе, что перед химиком стоит раствор, содержащий некоторое количество кислоты, и ему нужно узнать, сколько именно кислоты в нем содержится. Он добавляет в раствор немного фенолфталеина, а потом принимается приливать по каплям раствор основания, который он заранее приготовил и содержание основания в котором он точно знает. Сначала добавляемое основание тут же соединяется с кислотой, содержащейся в растворе, и ничего не изменяется. Но вот наступает момент, когда вся кислота уже израсходована, и следующей капле основания не с чем соединяться. Тогда это основание воздействует на фенолфталеин, и весь раствор внезапно приобретает красный цвет. [c.193]

    Химик знает, сколько основания он добавил к этому моменту , и может теперь подсчитать, сколько было в растворе кислоты, потому что он знает, сколько молекул данной кислоты соединяются с каждой молекулой данного основания. Вещества, подобные фенолфталеину, носят название индикаторов. [c.193]

    Ясно, что, начиная с момента примерно 50%-ного превращения (5,7% гидролизующегося хлора), требуется все больше солей сульфокислот для обеспечения [c.413]

    Источником облучения служит ртутная лампа, заключенная в светильник из кварцевого или увиолевого стекла, погруженный в реакционную жидкость. При помощи выносного холодильника температуру в аппарате поддерживают около 20°. До этого момента практически нет никакого отличия от процесса сульфохлорирования, если не считать, что хлор заменен кислородом, правда, в несколько другом отношении к двуокиси се ры. [c.489]

    С момента производства топлив до их применения в летательном аппарате проходит, как правило, продолжительное время. Это связано прежде всего с тем, что в аэропортах должен быть определенный запас топлив для бесперебойной работы. Кроме того, необходимо время на транспортировку, фильтрацию топлив и другие операции. Продолжительность времени, в течение которого топливо может использоваться по прямому назначению, регламентируется специальными документами. Ограничение сроков хранения топлив, а также строгие правила транспортировки и условий хранения вызваны тем, что все нефтяные топлива в той или иной степени изменяют свой первоначальный состав, а следовательно, и свойства. [c.41]

    Надежность работы ракетного двигателя во многом зависит от того, как осуществляется его запуск. В момент запуска топливо воспламеняется через промежуток времени, равный периоду задержки воспламенения, который зависит от сорта топлива. В течение этого времени в камере сгорания накапливается топливная смесь, мгновенное воспламенение которой приводит к взрыву, сила этого взрыва зависит от количества топлива, поступившего в камеру сгорания к моменту воспламенения. При больших задержках воспламенения это приведет к повреждению двигателя. [c.119]


    С уменьшением толщины масляной пленки наступает момент, когда через пленку масла начнут проступать отдельные неровности, имеющиеся на поверхностях, приводящие к контакту трущихся поверхностей. Наступает граничный режим смазки. С увеличением аза [c.130]

    Смазывающая способность масел должна проявляться в двух положительных качествах масла во-первых, в способности предотвращать износ поверхностей трения в условиях устойчивой граничной пленки масла в области окислительного (по классификации Б. И. Костецкого) износа, т. е. масло должно обладать противоизносными свойствами во-вторых, в способности отодвигать в сторону больших нагрузок, больших скоростей скольжения и более высоких температур момент разрыва граничной пленки масла и наступления схватывания металлов, т. е. масло должно обладать противозадирными свойствами. [c.158]

    В моменты запуска и останова граничная пленка масла должна защищать узлы трения двигателя от сухого трения, а также обеспечить надежную работу шестерен редуктора и других силовых передач, где образование жидкостного трения невозможно. Следовательно, масло должно обладать высокой смазывающей способностью. Таким образом, масло в двигателе подвергается действию высоких температур и давлений, находится в тесном контакте с различными металлами в присутствии кислорода воздуха. В таких условиях оно должно быть весьма стабильным, чтобы длительное время сохранять свои свойства и не давать больших загрязнений в виде нагара, лака и шлаков. [c.179]

    В рабочем интервале температур предел прочности большинства смазок составляет от 1 до 30 г см . Для определения предела прочности смазок существует прибор пластомер К-2, созданный К. И. Климовым. Схема пластомера К-2 приведена на рис. ПО. Определение предела прочности смазок по этому методу (ГОСТ 7143—54) основано на фиксировании минимального давления, вызывающего сдвиг смазки в капилляре 2 пластомера К-2. При нагреве резервуара б за счет термического расширения жидкости давления в герметически замкнутой системе прибора повышается. В момент сдвига столбика смазки за счет увеличения объема системы давление падает. Максимальное давление, достигнутое при определении, фиксируемое манометром, соответствует пределу прочности смазки. [c.193]

    Оценка химической стабильности производится по ГОСТ 5734—53. Этот метод заключается в том, что смазку окисляют кислородом в специальной бомбе при повышенных давлениях и температуре. В результате нагревания давление в бомбе сначала повышается, затем держится постоянным до тех пор, пока не начнется поглош,ение кислорода смазкой при окислении ее. Время с момента помещения бомбы в термостат до начала падения давления в ней вследствие окисления смазки считают индукционным периодом. После окисления в бомбе определяют кислотное число смазки. Чем длительнее индукционный период смазки и чем менее повысилось кислотное число по сравнению с начальным, тем выше ее химическая стабильность. Следует отметить, что этот метод очень сложен и имеет ряд существенных недостатков. Однако другого, более простого и надежного, метода пока не разработано.  [c.198]

    Это не означает, что Азимов нашел идеальную форму для изложения истории науки — нет, речь идет только о реализации одной из ее важнейших и очевидных, но с трудом воспроизводимых возможностей. Но одновременно книга Азимова кое-что и потеряла. За ее пределами остались описания острой борьбы сторонников различных воззрений. Ряд принципиальных моментов истории поднесен не всегда точно. Так, в целом объективно излагая ход событий, Азимов поразительно небрежен при оценке роли А. М. Бутлерова в развитии химии. (Это тем более удивительно, что иногда менее значительные и сравнительно мало известные эпизоды — например, приоритет В. Н. Ипатьева перед Ф. Бергиусом — он излагает правильно.) Азимов абсолютизирует значение теории резонанса. Сама структура книги отвечает больше структуре общих курсов химии, нежели современным тенденциям эволюции структуры самой науки. [c.6]

    Чистое железо не очень твердое. Однако в процессе плавки железо может вобрать в себя столько углерода из древесного угля, что в результате образуется поверхностный слой сплава железа и углерода, называемого сталью. Этот сплав тверже самой лучшей бронзы, и изготовленный из него наконечник после заточки долга остается острым. Получение стали явилось поворотным моментом в-нстории развития металлургии и в истории развития общества. Наступил железный век. [c.12]

    Если организм получает больше витамина А, чем ему нужно в данный момент, то излишки витамина откладываются в виде запасов в печени. Они расходуются, когда в пище витамина А не хватает. Однако если витамин А отстутствует в пище долгое время, эти запасы исчерпываются. Когда это происходит, человек теряет способность видеть при тусклом свете — развивается болезнь, называемая куриной слепотой. Одновременно пересыхают и начинают шелушиться влажные слизистые оболочки носа, горла и особенно глаз. Эта болезнь называется ксероф-тальмией от греческих слов, означающих сухие глаза . [c.100]

    Метод основан на том, что отходящие газы, образовавшиеся при пиролизе, сжигаются в смеси с воздухом для нагрева огнестойкого материала, подготовляя таким образом печь для пиролиза. Чтобы обеспечить регулярный и непрерывный поток пирогаза, установка состоит из очень многих печей. В каждый данный момент в одной половине печей идет пиролиз исходного сырья (газа), в то время как другая половина нечей нагревается за счет сжигания отопительного (отходящего) газа. Оборот каждой нечи 60 сек. В качестве отопительного газа используется отходящий газ (абгаз), получающийся при переработке газов пиролиза на ацетилен. Продукты сгорания выбрасываются в атмосферу. [c.96]

    При сульфохлорировании, как и прн других реакциях замещения, иа-стунает момент, когда в реакционной смеси еще пмеется известное количество пепротзсагировавшого (незамещенного) углеводорода, но уже происходит образование дисульфохлорида, которое мо/кет принять такие размеры, что сульфохлорированию подвергнется только часть углеводородов, тогда как для остальной части не хватит сульфохлорирующих реагентов. [c.137]

    Из большого числа возможных реакций ацетилена в настоящей тсниге рассматриваются только важнейшие и имеющие в данный момент нромыгален-ное значение. [c.242]

    При всех трех процессах неизбежно наступает момент, когда, несмотря на присутствие значительного количества непрореагировавшего углеводорода, начинается образование ди- и полизамещенных продуктов, хотя в большинстве случаев стремятся к получению моно-хлорированных продуктов. Для того чтобы возможно было предотвратить чрезмерно глубокое хлорирование при всех процессах, необходимо применять большой избыток углеводорода это требование диктуется и необходимостью отвода тепла, выделяющегося при реакции. [c.137]

    При обработке первичного нитропарафипа азотистой кислотой в момент выделения путем подкисления серной кислотой смеси его> с нитритом образуется нитро-нитрозосоединение, которое тотчас же перегруппировывается в нитроловую кислоту  [c.270]

    Ряд важнейших термодинамических свойств описали недавно Холь-комб и Дорсей [162]. Дипольный момент мононитропарафинов лежит примерно в пределах 3,2. [c.319]

    К конструктивным способам относятся подогрев гоплива или фильтра, впрыск специальной жидкости на фильтр в момент забивания последнего кристаллами льда, омывание фильтра топливом, которое подается под давлением от специального насоса (гидросмыв) и др. [c.51]

    Для определения температуры самовоспламенения горючей смеси можно пользоваться прибором, схема которого показана на рис. 48. Методика работы заключается в том, что в нагретую кварцевую колбу вводят определенное количестно топлива и регистрируют время от момента ввода топлива до воспламенения и температуру. [c.78]

    Отличительной особенностью топливной системы сверхзвукового самолета является ее значительно большая тепловая напряженность. В результате аэродинамического разогрева, а также за счет тепла, отводимого от различных рабочих тел (масла, гидрожидкости и т. п.), температура топлива может повыситься до 150—160° С, в то время как на дозвуковых самолетах она редко поднимается выше 50—80° С. В топливных баках сверхзвукового самолета, где топливо находится продолжительное время, температура его к концу полета может повышаться до 125—130° С (при М = 2,5). В топливных баках дозвукового самолета топливо в процессе полета охлаждается до —20- 30° С. Таким образом, топливо для сверхзвуковых самолетов должно сохранять длительное время свои эксплуатационные свойства при высоких (до 160—180° С) температурах. На сверхзвуковом самолете топливо разогревается до высоких температур в процессе полета со сверхзвуковой скоростью. На участках же Гтолета от взлета до преодоления сверхзвукового барьера топливо находится при относительно невысоких температурах, а в момент запуска силовых установок на земле в зимний период может находиться при отрицательных температурах. Таким образом, топлива для сверхзвуковых самолетов должны сохранять свои эксплуатационные свойства и при низких температурах (до —60° С). [c.109]

    В маслах и смазках поверхностно-активными элементами, образующими граничный слой, являются полярные молекулы с отчетливо выраженной ассимметричной структурой. Полярными группами в молекуле являются ОН СООН Г 1Нг, N02 или атомы О, 8, N. С1 и др. Поверхностная активность молекулы зависит от величины ее дипольного момента, характеризующего асимметрию распределения положительных и отрицательных электрических зарядов в молекуле и относительных размеров полярных групп и неполярной части молекулы. [c.133]

    Условия работы масла в трансмиссионных передачах совершенно отличаются от условий работы масла в двигателе. Основным узлом трения в трансмиссии является зубчатое зацепление червячной, конической и гипоидной передач. При передаче больших мощностей, например в редукторе вертолета, на зубьях шестерен развиваются сверхвысокие давления при достаточно большой скорости скольжения. На узкой полоске контакта зубьев развиваются высокие температуры. Таким образом, пленка масла, находящаяся между зубьями шестерен в момент их контакта, подвергается воздействию сверхвысоких давлений, высокой скорости скольжения и высокой температуры. Одним из основных требований, предъявляемых к трансмиссионному маслу, является макси.мальное уменьшение износа и полное устранение схватывания поверхностей зубьев шестерен. Трансмиссионные масла должны обладать высокими противоизносными и противозадирными свойствами. [c.182]

    Термическая стабильность оценивается максимальной температурой, при которой твердая смазка сохраняет свои свойства. При тренпи двух сопряженных поверхностей выделяется тепло, в результате твердая смазка может разогреваться до очень высоких температур. Замеряя температуру трения и определяя момент, когда твердая смазка теряет свои смазывающие свойства (резко возрастает трение, повышается износ и т. п.), можно оценить термическую стабильность твердой смазки. [c.208]


Смотреть страницы где упоминается термин Момент: [c.20]    [c.130]    [c.16]    [c.17]    [c.71]    [c.36]    [c.139]    [c.60]    [c.39]    [c.78]    [c.168]   
Физика и химия твердого состояния (1978) -- [ c.0 ]

Перемешивание и аппараты с мешалками (1975) -- [ c.0 ]

Органические реагенты в неорганическом анализе (1979) -- [ c.0 ]

Курс химии Часть 1 (1972) -- [ c.0 ]

Современная неорганическая химия Часть 3 (1969) -- [ c.0 ]

Промышленные полимерные композиционные материалы (1980) -- [ c.0 ]

Индуцированные шумом переходы Теория и применение в физике,химии и биологии (1987) -- [ c.53 ]

Новейшие методы исследования полимеров (1966) -- [ c.0 ]

Введение в термографию Издание 2 (1969) -- [ c.0 ]

Перемешивание и аппараты с мешалками (1975) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте