Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа диссоциации иона HSO, определение солей, уравнение

    Метод определения константы гидролиза из констант диссоциации. Все описанные выше методы дают только приближенные значения так называемой константы гидролиза соли наиболее точный метод определения истинной константы гидролиза состоит в использовании термодинамической константы диссоциации слабой кислоты, или слабого основания, или обоих веществ вместе, а также ионного произведения воды. Для этого применяют уравнения (4), (5) и (23). Полученные таким образом результаты строго приложимы только к растворам при бесконечном разведении, но можно сделать поправку на влияние ионной силы среды, используя уравнения Дебая—Гюккеля. Перечисленные выше методы представляют интерес, поскольку они дают определенные экспериментальные доказа- [c.513]


    Значения констант диссоциации кислоты, основания, соли, константы автопротолиза растворителя, исходная концентрация кислоты считываются и выводятся на широкую печать под заголовком. Н присваивается значение НО и при этом значении Н рассчитываются концентрации анионов кислоты В, катионов основания С и анионов растворителя Г по уравнениям (12—И) со значениями СВ в первой точке титрования. По полученным значениям О, С и Г из уравнения электронейтральности (11) находится последующее значение Н (НП), затем находится разница между предыдущим и последующим значениями Н Т = но — НП. Так как выбор НО до некоторой степени произволен, то для определения направления движения к Нравн в программе предусмотрен блок автоматического выбора знака шага У, Приближение Н к равновесному значению идет с постоянным шагом до перемены знака у Т. При перемене знака значение шага уменьшается вдвое и остается постоянным до следующей перемены знака у Т. Расчеты продолжаются до тех пор, пока абсолютное значение Т не станет меньше наперед заданной величины ЕР8 при выполнении этого условия pH, равное —1 [Н2М+], вычисляется и на печать выводятся значения СВ и равновесных концентраций ионов (Н2М+], [Ап ], [ВН+], [М ] в первой точке титрования. Затем расчеты выполняются для второй, третьей и т. д. точек титрования и заканчиваются, когда просчитываются значения равновесных концентраций ионов в конечной точке титрования (при О Р + 1, где Q — число точек титрования). [c.26]

    Вычисленные концентрации ионов аммония, подобно соответствующим концентрациям в табл. 78в, вообще выще, чем концентрации ионов аммония, установленные при помощи стеклянного электрода. Расхождение может, конечно, обусловливаться систематической экспериментальной ошибкой при определении концентрации иона аммония. Но оно может быть также вызвано тем, что часть имеющейся аммонийной соли адсорбируется углем, или, скорее, тем, что предположение, на котором основаны расчеты, а именно, что уголь связывает весь осаждающийся кобальт в виде гидроокиси кобальта, оказывается необязательно правильным. pH изучаемых равновесных растворов непосредственно не определяли, а вычисляли на основании найденных концентраций аммиака и аммонийной соли. При этом было принято, что показатель константы кислотной диссоциации иона аммония при 30° и рассматриваемых ионных силах (0,172 и 0,173 соответственно, см. стр. 287) равен 9,10. При рассчитанном значении pH 10,55 не только аквопентаммин-, но также и диаквотетраммин-ионы полностью превращаются в гид-роксо-комплекс. Поэтому можно было вычислить константы гидролиза прямо из уравнений [c.282]

    Этот способ вычислений можно использовать, например, для определения pH раствора хлористого аммония. Ион аммония - слабая кислота, диссоциирующая в соответствии с уравнением МН+ 4- Н О + Н . Константа кислотной диссоциации иона аммония составляет 5,5 10 °. Однако, если рассматривать хлористый аммоний как соль слабого основания - аммиака, то можно пользоваться значением константы основной диссоциации аммиака, которая равна 10 V 5,5-10 ° = 1,8-10 , и проводить вычисления на основе формулы (16). [c.86]


    Диэлектрическая проницаемость этилендиамина, равная 12,5, означает, что образование ионных пар в нем происходит довольно интенсивно, хотя и в меньшей степени, чем в уксусной кислоте. Несмотря на то, что в этилендиамине, как и в уксусной кислоте, электролиты диссоциируют не полностью, в связи с более высокой диэлектрической проницаемостью этого растворителя константы диссоциации ионных пар более высокие, порядка 10- для наиболее сильных электролитов. Это означает, что при использовании уравнений (4-29), (4-32) и (4-36) допущения, сделанные в отнощении концентраций для уксусной кислоты, часто оказываются несостоятельными применительно к этилендиамину. Так, для многих расчетов нельзя допустить, что концентрация недиссоциированного электролита равна аналитической концентрации. Кроме того, образование ионных пар в соли, продукте реакций нейтрализации, очень важно при определении положения равновесия. Анионы кислот в этилендиамине обычно слабо сольватированы, поэтому имеет значение гомосопряжение [см. уравнение (4-37)]. Так, соотношение активностей для фенола в этилендиамине Она / на а  [c.90]

    Известное значение подвижности иона натрия можно суммировать с подвижностью НА и получить величину для соли NaHA далее можно определить зависимость эквивалентной электропроводности от концентрации, предположив, что для этого применимо уравнение Онзагера. Так как электропроводность кислоты HgA, а также НС1 и Na l при различных концентрациях известна, то, следовательно, имеются все данные, необходимые для определения константы диссоциации НаА как одноосновной кислоты. Правда, этот метод нельзя считать [c.428]

    На график наносят значения pH в зависимости от количества прибавленного стандартного раствора кислоты (или основания). Полученные кривые могут быть использованы как для определения конечной точки титрования, которая имеет тот же смысл, что и конечная точка, находимая по изменению цвета дрц титровании с индикаторами, так и для определения констант ионизации (констант диссоциации) кислот или щелочей, нахо- дящихся в растворе. В первом приближении можно считать, что форма кривой потенциометрического титрования зависит только от химической природы и количества кислоты или основания и не зависит от солей, находящихся в растворе. Однако это верно только в том случае, если ионная сила раствора очень мала и остается малой в продолжение всего титрования. Ионная сила раствора 1 может быть опрёдена по следующему уравнению  [c.410]

    Формула для определения pH в растворе соли, образованной анионами слабой кислоты и катионами сильного основания (например, СНзСООМа) выводится аналогично только что выведенной, только вместо Коен, здесь следует взять /Скисл., так как в этих формулах [Н 1 определяется величиной константы диссоциации слабого компонента. Разделив выражение [№] [ОН 1=/Сн20 на уравнение закона ионного равновесия, примененного к диссоциации СН3СООН, и проведя сокращение, получим равенство  [c.180]

    Константа электролитической диссоциации кислоты К при данных условиях постоянна, поэтому согласно уравнению (7) определение концентрации ионов зависит только от отношения концентраций кислоты и соли, взятых для приготовления буферной смеси, и не зависит от абсолютного значения концентраций. Вследствие этого при разбавлении буферного раствора концентрация водородных ионов должна оставаться неизменной. [c.163]

    Самый старый способ определения констант диссоциации, конечно, основан на измерениях электропроводности. В растворе, приготовленном либо из заряженной кислоты, либо из заряженного основания, устанавливаются равновесия ВН-Н + H20 B--f Н3О+ и В-Ь НгОч ВН+Ч-ОН-. Поскольку только правые части этих уравнений содержат ионы, метод электропроводности можно использовать даже для очень слабых кислот и оснований при условии, что концентрацию проводящих ток примесей можно сделать исчезающе малой. Если раствор содержит соль заряженной кислоты или основания, например соль ВН+-С1- или К+-В , соответствующие уравнения имеют вид ВН++Н20-ЬС1- В + Нз0+-ЬС1 и В -Ь -ЬНгО-Ь К+=р ВН-1-ОН -НК+- Очевидно, что в этом случае положение менее благоприятно для применения метода электропроводности. Однако из-за того, что подвижность Н3О+ и ОН-значительно выше подвижности любых других ионов, электропроводность можно определить с очень высокой степенью точности. Поэтому данный метод все же используют при условии, что равновесия указанных реакций не слишком смещены в одну сторону. [c.43]

    Принцип расположения соединений в табл. 2.1.2 тот же, что и для табл. 2.1.1. В ряде случаев приведены уравнения реакций, к которым относятся данные значения констант равновесия. Комплексные соединения, кислые и основные соли, произведения растворимости которых рассчитаны для процесса полной диссоциации, отмечены знаком (например, запись Pe0HS04 означает, что произведение растворимости дано для процесса Pe0HS04 Ре + ОН" + 80 "). В табл. 2.1.2. приводятся усредненные данные, при этом предпочтение отдавалось значениям, определенным при нулевой ионной силе раствора. Сильно различающиеся данные вьщелены курсивом. [c.279]

    Уравнение (1) относится к равновесию реакции металлирова-ния, а уравнения (2) и (3) — к диссоциации двух солей С — Н-кислот. Авторы предположили, что К и К, константы равновесия для реакции (2) и (3), примерно равны, поскольку ранее было показано [За], что в растворе пиридина электропроводность солей ряда производных триарилметана различной кислотности примерно одинакова. Приняв эти допущения и используя обычное определение для рКа, можно написать уравнения (4) и (5), причем последнее связывает разницу в величине рКа для пары кислот с визуальным изменением окраски при установлении равновесия реакции металлирования. Недавно было показано [36], что при комнатной температуре в растворе тетрагидрофурана натриевая и цезиевая соли флуорена существуют в виде неразделенных ионных пар со сложным спектром в видимой и ультрафиолетовой областях. В то же время литиевая соль при 25° или натриевая при —80° существует в основном в виде разъединенных молекулами растворителя ионных пар, имеющих те же спектры в видимой области, как и неразделенные ионные пары, но заметно отличающихся по УФ-спектрам. Измерения электропроводности показали, что при этом имеется лишь незначительное количество сполна диссоциированного вещества. Из этих данных следует, что изменение окраски, которое было использовано Мак-Ивеном для установления шкалы кислотности, связано с образованием ионных [c.10]


    И. М. Коренман для малопрочных комплексов состава 1 1 ввел поправку на диссоциацию комплекса [601, но влияние конкурирующих реакций протоннзации фотометрического реагента и комплексообразования определяемого катиона конкурирующими лигандами эта поправка не учитывает. А между тем относительная чувствительность фотометрического определения, достигаемая в присутствии мешающих ионов, может существенно уменьшаться по сравнению с раствором чистой соли. В таких случаях в уравнения (3.4)—(3.8) целесообразно вводить поправку, учитывающую относительную устойчивость фотометрируемого соединения при заданных условиях [68]. Для учета количественного влияния конкурирующих реакций на значения нижних пределов определяемого содержания можно использовать условные константы устойчивости фотометрируемых соединений [42—47 ]. [c.57]


Смотреть страницы где упоминается термин Константа диссоциации иона HSO, определение солей, уравнение: [c.152]    [c.262]   
Физическая химия растворов электролитов (1950) -- [ c.584 ]

Физическая химия растворов электролитов (1952) -- [ c.584 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциации константы, определение

Диссоциация определение

Диссоциация солей

Диссоциация уравнение

Константа диссоциации

Константа диссоциации иона HSO, определение

Константа диссоциации иона HSO, определение уравнение

Константа диссоциации иона уравнение

Константа диссоциации ионных пар

Константа ионов

Константы уравнение

Константы уравнений для констант диссоциации

Определение иония

Уравнение для определения рКа

Уравнения ионные



© 2024 chem21.info Реклама на сайте