Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация ионов, определение

    Протолитические, а также и многие другие реакции ионов являются обратимыми процессами. Поэтому при изучении ионных реакций часто приходится иметь дело с определением термодинамически равновесных концентраций тех или иных ионов. В то же время в результате сильных электростатических взаимодействий между ионами уже при малых концентрациях перестают быть применимыми законы для идеальных растворов, в частности, закон действия масс в его простейшей формулировке (хотя электростатические взаимодействия в растворе ослаблены по сравнению с газом, они остаются значительно более сильными, чем взаимодействие между незаряженными частицами). При расчетах равновесных концентраций ионов необходимо, как правило, пользоваться термодинамической константой равновесия, выраженной через активности ионов. [c.32]


    Определение железа. Содержание железа определяют фотометрическим методом, основанным на образовании в щелочной среде комплексных анионов трисульфосалицилата железа. Предварительно строят градуировочный график зависимости оптической плотности А от концентрации ионов Ре +. В мерные колбы вместимостью 50 мл вводят 0,10 0,15 0,20 0,25 и 0,30 мг ионов Ре + (отбирают соответственно 1,0 1,5 2,0 2,5 и 3,0 мл раствора соли железа, содержащего Ре + 0,1 мг/мл, в каждую колбу добавляют 5 мл 10%-ного раствора сульфосалициловой кислоты, 5 мл 10%-ного раствора аммиака, разбавляют до метки дистиллированной водой и тщательно перемешивают. Измеряют оптическую плотность растворов на фотоэлектроколориметре с синим светофильтром (Я = 400 нм) в кюветах с толщиной слоя / = 30 мм, используя дистиллированную воду в качестве раствора сравнения. Строят график зависимости Л=/(сре + (в мг). [c.232]

    Поскольку слабые кислоты диссоциируют в воде лишь частично, слабая кислота, например уксусная, создает в водном растворе меньшую концентрацию ионов водорода, чем полная концентрация добавляемой в раствор кислоты. В таких случаях для определения концентрации ионов водорода и проведения связанных с этим расчетов приходится обращаться к выражению для константы диссоциации слабой кислоты. Чтобы пояснить сказанное, вычислим pH 0,0100 М раствора уксусной кислоты. Из примера 4, в котором рассматривалась азотная кислота, нам известно, что 0,0100 М раствор сильной кислоты имеет pH 2,00. Поскольку уксусная кис- [c.229]

    Гидратацию изобутилена можно осуществить в разбавленных водных растворах сильных кислот (НС1, НВг) при комнатной температуре без катализатора. Кинетические определения показали, что скорость присоединения воды к изобутилену прямо пропорциональна концентрации ионов водорода в растворе, и гидратация протекает по следующей схеме, которая включает образование промежуточного карбокатиона  [c.193]

    Степень ионизации каждой группы зависит от pH среды и ионной силы раствора. Для полиамфолитов характерным является такое состояние, когда число ионизированных кислотных групп равно числу ионизированных основных, т. е. суммарный заряд макромолекул равен нулю. Это наблюдается при определенной концентрации ионов водорода, отвечающей изоэлектрической точке. В изоэлектрическом состоянии макромолекула стремится свернуться в наиболее плотный клубок. [c.152]

    Согласно классическому определению Аррениуса, кислота представляет собой вещество, которое при добавлении к воде повыщает в ней концентрацию ионов водорода, [Н" ], а основание-вещество, повышающее в воде концентрацию гидроксидных ионов, [ОН ]. 1 моль различных кислот может высвобождать при полной диссоциации 1, 2 или 3 моля ионов Н . Грамм-эквивалентом кислоты называется такое ее количество в граммах, которое способно при полной диссоциации высвободить 1 моль протонов Н" , поэтому грамм-эквив алент такой кислоты, как Н3РО4, равен одной трети ее молекулярной массы. Точно так же если какое-либо основание способно высвобождать при полной диссоциации в растворе 2 моля ионов ОН , как, например, Са(ОН)2, то грамм-эквивалент такого основания равен половине его молекулярной массы. [c.100]


    С ростом pH диффузия воды, влагопроводность и миграция водорастворимых соединений в торфяных системах снижаются [224, 229]. Однако на перенос влаги и растворенных веществ в данном случае определенное влияние оказывают также изменения структуры и емкости обмена торфа. С ростом pH органические компоненты торфа интенсивно набухают, уменьшая тем самым активную капиллярную сеть и влагопроводность мате риала. При снижении pH в торфе наблюдается процесс, обратный описанному. Рыхлые гуминовые образования торфа претерпевают компактную коагуляцию, активизируя капиллярную сеть и, соответственно, перенос влаги в материале. По характеру зависимости а от pH торфяные системы при рН 4, согласно [218], можно отнести к коллоидным капиллярно-пористым, а при рН>4 — к типичным коллоидным. Кроме того, при низких значениях pH концентрация ионов в дисперсионной среде торфа возрастает, а при высоких pH, наоборот, снижается. Это является следствием перехода ионов из обменного состояния в раствор. [c.75]

    Произведение из такого коэффициента и концентрации соответствующего иона представляет собой долю этого иона в удельной проводимости раствора. Эти коэффициенты приведены во втором столбце табл. 13.3. В третьем столбце таблицы даны концентрации ионов, определенные другими аналитическими методами, в сильно разбавленных водных растворах, по составу близких к анализируемым. Данные последнего столбца получены умножением величин концентраций на соответствующий коэффициент. Вычисленная удельная проводимость образца дана в последней строке. Измеренная удельная проводимость раствора должна совпадать с этой суммой с точностью до 2%. Если точность меньше, то это указывает на ошибку при одном из анализов. [c.202]

    Согласно приведенному в гл, 2 определению Аррениуса, кислота представляет собой вещество, повышающее концентрацию ионов водорода в водном растворе, а основание - вещество, повышающее концентрацию гидроксидных ионов. Более общее определение кислот и оснований было предложено в 1923 г. Бренстедом и Лаури. Определение Бренстеда-Лаури применимо не только к водным, но и к неводным растворам. Согласно Бренстеду-Лаури, кислотой называется любое вещество, способное высвобождать ионы водорода, или протоны, а основанием-любое вещество, способное соединяться с ионами водорода и, следовательно, удалять их из раствора. Теперь, когда мы понимаем, что молекулы воды находятся в равновесии со своими диссоциированными ионами Н и ОН , нетрудно убедиться, что в случае водных растворов оба определения оказываются эквивалентными. Кислоты, как в представлении Аррениуса, так и в представлении Бренстеда, hsj wt h веществами, высвобождающими ионы водорода. Если основание, в представлении Бренстеда, соединяется с ионами водорода, это значит, что в водном растворе оно смещает равновесие реакций (5-5) в сторону диссоциации до тех пор, пока не восстанавливается баланс. В результате образуются дополнительные гидроксидные ионы, и, таким образом, в водных растворах определение основания по Бренстеду совпадает с определением основания по Аррениусу. [c.214]

    Предложен "- быстрый и удобный метод для проверки результатов при стандартных анализах природных вод и рассолов. Вычисляется ряд коэффициентов для имеющихся в растворе ионов. Произведение из такого коэффициента и концентрации соответствующего иона представляет собой долю этого иона в удельной электропроводности раствора. Коэффициенты помещены во втором столбце табл. 2. В третьем столбце даны концентрации ионов, определенные другими аналитическими способами в сильно разбавленных водных растворах, по составу близких к анализируемым. Числа четвертого столбца получены умножением величин концентрации на соответствующий коэффициент. Произведение есть не что иное, как рассчитанная удельная электропроводность пробы. Измеренная удельная электропроводность может отклоняться не более чем на 2%. Если точность меньше, это указывает на ошибки в одном или нескольких анализах. Коэффициенты рассчитывались при допущении, что общая удельная электропроводность составляет величину около 100 шо. Таким образом, если проба имеет электропроводность значительно выше, ее следует разбавить дистиллированной водой перед выполнением контрольного опыта. [c.19]

    Некоторые сведения о водородном показателе были даны в гл. XVIII, 10 (стр., 485). Здесь рассмотрим потенциометрический метод определения pH. Величина pH, или водородный показатель, часто определяется как десятичный логарифм концентрации ионов водорода, взятый с обратным знаком  [c.587]

    Скорость движения белковых молекул зависит также от концентрации ионов. Определения обычно проводят при ионной силе 0,1 или еще меньше. [c.155]

    По-видимому, наиболее распространенные определения кислот и оснований принадлежат шведскому физику и химику Сванте Аррениусу (1859-1927). Согласно определениям Аррениуса, кислотой называется вещество, которое при добавлении к воде повышает концентрацию ионов водорода [Н ], а основанием - вещество, которое при добавлении к воде повышает концентрацию гидроксидных ионов [ОН ]. В табл. 2-1 и 2-2 указаны [c.80]

    После достижения стационарного состояния ИТФ концентрация иона определенного типа по всему объему зоны не меняется. При постоянной скорости миграции, т. е. при постоянном то- [c.315]

    Для наблюдения подобного же эффекта в низкодисперсных системах, например, в суспензиях или пористых телах, электрофорез можно перевернуть , заставив двигаться не частицы, а жидкость, сохраняя частицы неподвижными. Такое обращение электрофореза, называемое электроосмосом, может быть осуществлено, например, на порошке, если приготовить его в виде диафрагмы, по обе стороны которой находится раствор электролита. Свободное пространство между частицами порошка представляет собою сложные узкие переходы — капилляры ионы внешних слоев располагаются в пространстве капилляров, в то время как ионы ионного и части противоионного слоя удерживаются поверхностью (см. рис. 4-II). В растворе электролита, заполняющего капилляры, окажется избыточная концентрация ионов определенного заряда, т. к. часть ионов противоположного знака адсорбировалась на поверхности частиц порошка, что привело к снижению их концентрации в объеме. При наложении электрического поля жидкость будет передвигаться по капиллярам к соответствующему электроду. В результате уровень жидкости в сосуде переместится к одному из электродов. [c.30]


    Реакция (Х,1) имеет второй порядок, т. е. ее скорость пропорциональна концентрации и СО2, и ОН", причем константа ее скорости при 20 °С и бесконечном разбавлении составляет около 6000 л/ моль-сек). Реакция (Х,2) — первого порядка с константой скорости при 20 °С около 0,02 сек . Таким образом, в любом растворе, в котором концентрация ионов гидроксила более 10 г-ион л (pH > 10), скорость взаимодействия СОз по реакции (Х,1) будет выше 0,6 сек , что более чем в 30 раз быстрее взаимодействия по реакции (Х,2). Следовательно, при абсорбции СО3 щелочными растворами с pH > 10 реакция (Х,2) обычно не играет существенной роли при определении суммарной скорости процесса. Однако, как показано ниже, эту реакцию можно каталитически ускорить, и тогда она может стать быстрее реакции (Х,1). [c.238]

    В основе электродиффузионного метода лежит измерение скорости диффузии находящихся в растворе ионов к поверхности датчика-электрода. Непосредственно измеряемой величиной является электрический ток датчика, пропорциональный диффузионному потоку активных ионов. Принципиальная схема метода представлена на рис. 1.13. В поток электролита специального состава помещаются два электрода катод малого размера и анод, имеющий значительно большую площадь. Катод является датчиком измеряемой гидродинамической величины (на схеме — напряжения трения). При подаче на электроды постоянного напряжения на их поверхности происходит быстрая электрохимическая реакция, в результате которой концентрация ионов определенного сорта (активных ионов) становится равной нулю. Вследствие возникновения разности концентраций между объемом и поверхностью катода происходит диффузия активных ионов к катоду и в цепи возникает электрический ток, который дополнительно усиливается. Требования, предъявляемые к [c.55]

    При определении ионов серебра в разбавленных растворах (до М) серебро предварительно накапливают на поверхности графитового электрода в виде металла и затем анодно растворяют при изменении потенциала. Максимальный ток электрорастворения серебра является линейной функцией объемной концентрации ионов Ag+. Определению не мешают значительные количества Си +, поэтому метод можно применять для определения серебра в меди и медных сплавах. При полярографировании следует использовать выносной каломельный электрод во избежание попадания ионов С в анализируемый раствор. [c.152]

    В нефтеперерабатывающей и нефтехимической промышленности ход реакций в жидкостях зависит от степени щелочности или кислотности среды, т. е. от величины концентрации водородных ионов. Показателем концентрации водородных ионов в растворе служит величина pH, связанная с концентрацией ионов определенным математическим соотношением. [c.208]

    Число молекул воды, гидратирующих данный ион, не является строго определенным, так как трудно четко отграничить молекулы, гидратирующие ионы, от остальных молекул. Притяжение молекул ВОДЬ к иону быстро уменьшается по мере увеличения расстояния между ними. Первый слой полярных молекул растворителя около иона более прочно связан электростатическими силами с ионом, чем последующие слои. Таким образом, гидратация влияет на состояние всех молекул растворителя и чем выше концентрация ионов в растворе, тем сильнее их воздействие на полярные молекулы растворителя. [c.13]

    Каким образом реакция осаждения может быть использована для определения концентрации ионов  [c.516]

    Это в определенной степени объясняет закономерности изменения вязкости в минерализованных растворителях. В кислой среде происходит подавление диссоциации карбоксильных групп полимера, и цепочка молекулы сворачивается в клубок . С ростом pH раствора в результате усиления диссоциации карбоксильных групп происходит увеличение вязкости, но до определенного предела, так как увеличение концентрации ионов, экранирующих заряды карбоксильных групп, приводит, наоборот, к снижению вязкости раствора полимера (рис. 55). [c.115]

    Снижения высоты потенциального барьера, как видно нз формулы для определения расклинивающего давления, можно достичь либо увеличением концентрации ионов с в электролите и утонением диффузного слоя б у поверхности частиц (6=1/ ), либо уменьшением (нейтрализацией) потенциала поверхности г з1 в результате специфической адсорбции на ней потенциалопределяющих ионов. Поэтому прп воздействии электролитов на дисперсные системы говорят о концентрационной и нейтрализованной коагуляциях (рис. П1.3). [c.73]

    Кислые, основные и нейтральные растворы следует определять в терминах относительных концентраций ионов водорода и гидроксидных ионов, а не определенными значениями pH таким образом будет обращено внимание на температурную зависимость К НдО- [c.572]

    Значение электродного потенциала зависит от трех факторов 1) от природы материала электрода, 2) от состава соприкасающегося с электродом раствора, в частности от концентрации ионов, образующихся при взаимодействии. электрода с раствором, и 3) от температуры. При определенных условиях устанавливается равновесный электродный потенциал. Для каждого металла, находящегося в равновесия с раствором, содержащим ) моль/л нонов данного металла, при стандартной температуре 25°С электродный потенциал называется стандартным. [c.204]

    Определение скорости коррозии металла (по какому-либо показателю коррозии убыли массы образца, водородному, изменению концентрации ионов металла в растворе и др.) при разных постоянных значениях его потенциала, поддерживаемых с помощью потенциостата, позволяют получить кривые скорость коррозии — потенциал, дающие наиболее исчерпывающую характеристику коррозионного поведения системы металл—электролит (рис. 347). [c.458]

    Концентрация ионов [С1 ] равна молярности кислоты, а величина Kw — константа при постоянной температуре. Таким образом для определения концентрации ионов [Н3О+] необходимо решить квадратное уравнение, причем представляет интерес только положительный корень [c.86]

    Чтобы с достаточной точностью найти рассматриваемую константу, по крайней мере в некоторых из экспериментальных систем должна быть достаточно большая концентрация ионов, к которым обратим электрод. Практически важный частный случай — исследование кислот средней силы. Экспериментально найдено, что для кислот с рК 3 смешанные константы, определенные титрованием по Спикмену при выполтшнии исследований на постоянном ионном фоне по методу [3], заметно меняются вдоль кривой титрования. Подбор константы формальной реакции совместно с константой кислотно-основного равновесия по програлгме [4] позволяет этот дрейф ликвидировать. В таблице приведен пример для титрования салициловой кис- [c.126]

    Формирование дисперсной системы происходит во времени, скорость ее образования зависит от концентрации ионов, образующих малорастворимое соединение. Метод, используемый для измерения изменения мутности во времени, получил название турбидиметрического кинетического. Он позволяет расширить возможности обычного метода. При кинетическом методе для определения компонента измеряют скорость реакции ( х/с(т), которая в начальный момент протекания ее описывается уравнением  [c.90]

    Электрод получает положительны ) заряд и притягивает, анионы из раствора в результате на поверхности электрода образуется двойной электрический сло11 с определенным скачком потенциала. Этот электродный потенциал зависит от концентрации ионов Fe + и FeЗ Знак потенциала и его величина определяются относительно стандартного водородного потенциала  [c.553]

    Вызывает тревогу возможная низкая точность определения входящей в эти формулы разности между равновесной концентрацией ионов водорода и концентрацией добавки сильной кислоты. Действительно, если h i значительно превышает Снаг [c.169]

    ИОНОВ меди в поле лигандов. Молярньп коэффициент поглощения тетрааммиаката меди при Х = 640 нм равен 1-102. Низкое значение е позволяет определять достаточно высокие концентрации ионов меди. Для повыщения воспроизводимости определения используют метод дифференциальной фотометрии, когда раствор сравнения содержит определенное точно известное количество ионов меди в виде аммиаката. [c.69]

    По определению Аррениуса основание-это вещество, уменьщающее концентрацию ионов водорода в растворе. Гидроксид натрия, гидроксид калия и подобные им соединения представляют собой основания, потому что они полностью растворяются и диссоциируют в водном растворе с образованием гидроксидных ионов  [c.220]

    При определении группового состава сложных смесей, представленных в нефтяных фракциях [171], аналитическими характеристиками служат суммарные интенсивности пиков определенных серий так называемых характеристических ионов. Определение неизвестных концентраций различных типов соединений осуществляется решением системы линейных уравнений, учитывающих взаимные наложения их масс-спектров. Калибровочные коэффициенты— элементы матрицы этой системы уравнений — определяются на основании анализа узких фракций модельных смесей, а также с помощью математических мQдeлeй, основанных на эмпирических корреляциях масс-спектров со структурой молекул. Анализ группового состава в конечном счете выводится из известных и все пополняемых масс-спектров индивидуальных соединений. Подробно эти принципы и методики количественного анализа с применением масс-спектрометрии рассмотрены в монографиях [166, 167]. [c.132]

    Для определения интенсивности света источника в реакционный сосуд наливают такое количество Vj актинометрического раствора, чтобы поглощение света в используемой спектральной области было полным. Раствор облучают в течение такого времени, чтобы получить концентрацию ионов Ре + 5-10 —З-Ю моль/л. После облучения V2 мл раствора переносят в мерную колбу вместимостью V3. Затем последовательно добавляют 0,1 н. H2SO4, 2 мл раствора [c.147]


Смотреть страницы где упоминается термин Концентрация ионов, определение: [c.80]    [c.119]    [c.30]    [c.549]    [c.280]    [c.549]    [c.87]    [c.83]    [c.129]    [c.436]    [c.457]    [c.177]    [c.444]   
Практикум по физической химии изд3 (1964) -- [ c.358 ]

Практикум по физической химии Изд 3 (1964) -- [ c.358 ]




ПОИСК





Смотрите так же термины и статьи:

Активная реакция среды и буферные системы организма Колориметрия Колориметрическое определение концентрации водородных ионов безбуферным методом

Виноградова Методы определения концентрации водородных ионов

Влияние концентрации водородных ионов на колориметрическое определение

Влияние концентрации ионов водорода на окраску индикатора . 140. Определение pH растворов при помощи универсального индикатора

Водорода ионы определение концентрации

Водородные ионы, концентрация, значение при определении

Вознесенская. Таблицы для определения концентрации и констант нестойкости жидких гидратов ионов

ГКривые титрования в определениях методами нейтрализации и соединения ионов Изменения концентрации ионов при титровании в методе нейтрализации

Дистанционное определение концентрации парамагнитных ионов

Значение концентрации водородных ионов при фотометрических определениях Влияние pH раствора на образование окрашенных комплексов

Иональная концентрация, определение связь с ионной силой, уравнение

Ионная концентрация

Ионные кластеры определение концентрации в газовой фазе

Колориметрическое определение концентрации водородных ионов окрашенной жидкости

Колориметрическое определение концентрации водородных ионов с помощью буферных смесей

Колориметрическое определение концентрации ионов водорода

Концентрация водородных ионов колориметрическое определение

Концентрация водородных ионов определение

Концентрация водородных ионов определение безбуферными методами

Концентрация водородных ионов определение буферным методо

Концентрация водородных ионов фотометрическое определение

Концентрация ионов

Концентрация ионов водорода определение

Концентрация определение

Лайнер, Натансон Колориметрическое определение концентрации водородных ионов

Лайнер, Натансон Колориметрическое определение концентрации водородных ионов в никелевых ваннах

Определение активностей и концентраций ионов в растворах

Определение активности (концентрации) ионов

Определение иония

Определение концентрации аммоний- и амид-ионов

Определение концентрации бромид-ионов с использованием бромид-селективного электрода

Определение концентрации водородных ионов (pH) на ламповом потенциометре ЛП

Определение концентрации водородных ионов (значение pH растворов)

Определение концентрации водородных ионов (по ГОСТ

Определение концентрации водородных ионов в контроле кожевенного производства при

Определение концентрации водородных ионов в контроле кожевенного производства при помощи сурьмяного электрод

Определение концентрации водородных ионов и электротитрование

Определение концентрации водородных ионов таблицы для газовых цепе

Определение концентрации диамагнитных ионов

Определение концентрации ионов водорода и потенциометрическое титрование Измерение электродвижущих сил

Определение концентрации ионов водорода колориметрически

Определение концентрации ионов водорода методом

Определение концентрации ионов иода и хлора при их совместном присутствии

Определение концентрации ионов кальция в объеме реактора

Определение концентрации ионов металлов по уравнению Ильковича

Определение концентрации ионов хлора в воде меркуриметрическим методом

Определение концентрации парамагнитных ионов в движущейся жидкости

Определение концентрации силикат-ионов

Определение концентрации сульфат-иона

Определение концентрации хлорид-иона

Определение концентрации хлорид-ионов турбидиметрическим методом

Опыт 2. Электропроводность как метод определения концентрации ионов

Ориентировочное определение концентрации водородных ионов в водных растворах

Показатель концентрации водородных ионов методы определения

Посторонние ионы допустимые концентрации при определении металлов в виде

Потенциометрический метод определения концентрации водородных ионов Значение потенциометрического метода

Потенциометрический метод определения э. д. с. и активной концентрации ионов

Потенциометрическое определение концентрации водородных ионов

Потенциометрическое определение концентрации ионов водорода

Прибор типа ЛП-5 для определения концентрации водородных ионов (pH) в среде

Применение pH-статического титрования для исследования ионных равновесий и определение концентраций органических кислот

Применение цветных индикаторов определению концентрации водородных ионов

Фторид-ионов низких концентраций определение

Фторид-ионов определение (низких концентраций) в дождевой воде

Хлорид ионов (низких концентраций) определение в цементе

Цианид-ионов определение (низких концентраций) индикаторным методом

Шкала для колориметрического определения концентрации водородных ионов



© 2025 chem21.info Реклама на сайте