Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа диссоциации иона HSO, определение

    ПОТЕНЦИОМЕТРИЯ—метод определения различных физико-химических величин, основанный на измерении э. д. с. обратимых гальванических элементов. П. широко применяется в аналитическо " химии для определения концентрации веществ в растворах, активности ионов, констант диссоциации слабых кислот и оснований, констант устойчивости комплексных соединений, произведения растворимости и др. Благодаря П. по многих случаях можно беспрерывно контролировать производство и автоматизировать многочисленные производственные процессы. [c.202]


    Поскольку слабые кислоты диссоциируют в воде лишь частично, слабая кислота, например уксусная, создает в водном растворе меньшую концентрацию ионов водорода, чем полная концентрация добавляемой в раствор кислоты. В таких случаях для определения концентрации ионов водорода и проведения связанных с этим расчетов приходится обращаться к выражению для константы диссоциации слабой кислоты. Чтобы пояснить сказанное, вычислим pH 0,0100 М раствора уксусной кислоты. Из примера 4, в котором рассматривалась азотная кислота, нам известно, что 0,0100 М раствор сильной кислоты имеет pH 2,00. Поскольку уксусная кис- [c.229]

    Определение эквивалентной электрической проводимости слабого электролита при бесконечном разведении. Расчет константы диссоциации по методу Фуосса и Брэя. Для многих слабых электролитов, в том числе лекарственных соединений, не имеется справочных таблиц предельных подвижностей ионов и предельной электрической проводимости электролита в целом, а без них невозможен расчет констант и степени диссоциации. Поэтому величины X" определяют экспериментально разными методами. Наиболее простым из них является метод Фуосса и Брэя. Согласно этому методу, уравнение (10.31) приводят к виду [c.153]

    По определению показатель pH характеризуется активностью ионов Н+, т. е. ионов только одного вида. Но посредством опыта можно найти только среднюю ионную активность (для 1 — 1-валентного электролита а — а+а , стр. 36). Ввиду этого понятие активности ионов водорода является условным, и шкалу значений pH приводят в соответствие с такими величинами (например, константами диссоциации), значения которых могут быть определены точно. Измерения pH потенциометрическим методом дают согласованные с условной шкалой данные. [c.155]

    Титрование смеси кислот или оснований. Дифференцированное титрование смеси сильных кислот или щелочей в водной среде невозможно по понятной причине концентрация водородных ионов в каждый момент титрования соответствует суммарному содержанию всех кислот или щелочей в растворе, С другой стороны, при титровании раствором щелочи можно определить сильную кислоту в присутствии слабой с точностью, зависящей от константы диссоциации слабой кислоты (А р д). Так, чтобы выяснить, какова должна быть величина для обеспечения заданной точности определения сильной кислоты, необходимо проследить за изменением pH в процессе титрования, пользуясь следующими расчетными формулами  [c.68]


    Между степенью диссоциации а (величиной, показывающей, какая часть растворенных молей электролита распалась на ионы) и константой диссоциации существует определенная зависимость, выраженная законом разбавления Оствальда  [c.40]

    Константа диссоциации кислоты определенная обычными методами, т. е. методами, которые дают возможность непосредственно оценивать активность ионов, а активность остальных веществ — по разности, представляет отнощение [c.308]

    Если потенциалопределяющими ионами являются ионы Н+ и ОН , то отсутствие заряда на поверхности (например, оксидов элементов) будет соответствовать определенному значению pH, называемому изоэлектрической точкой. В этой точке числа положительных и отрицательных зарядов одинаковы — общий заряд поверхности равен нулю. Очевидно, что изоэлектрическая точка зависит от кислотно-основных свойств вещества. Сродство к протону можно представить следующими константами диссоциации  [c.50]

    Определение проводимости и констант диссоциации ионных пар [c.269]

    В предыдущих параграфах десятой главы были рассмотрены принципиальные вопросы кислотности растворов, а ранее, в девятой главе, мы рассмотрели применение э. д. с. для определения констант диссоциации, ионного произведения и т- д- [c.801]

    При изучении пиридиновых комплексных соединений никеля [551 внесено дополнение к методу Яцимирского, которое дало возможность находить константы диссоциации без определения потенциала полуволны иона металла. Авторы проводят касательную к кривой, построенной в координатах Ец — lg С , под углом, тангенс которого tg а равен 0,015, считая, что эта область кривой должна соответствовать доминированию катионов металла Ме и комплексов МеЬ. Применение рассмотренного дополнения к методу Яцимирского особенно важно в случае необратимого восстановления на электроде катионов (Ш , Со + и др.). [c.60]

    Диэлектрическая проницаемость этилендиамина, равная 12,5, означает, что образование ионных пар в нем происходит довольно интенсивно, хотя и в меньшей степени, чем в уксусной кислоте. Несмотря на то, что в этилендиамине, как и в уксусной кислоте, электролиты диссоциируют не полностью, в связи с более высокой диэлектрической проницаемостью этого растворителя константы диссоциации ионных пар более высокие, порядка 10- для наиболее сильных электролитов. Это означает, что при использовании уравнений (4-29), (4-32) и (4-36) допущения, сделанные в отнощении концентраций для уксусной кислоты, часто оказываются несостоятельными применительно к этилендиамину. Так, для многих расчетов нельзя допустить, что концентрация недиссоциированного электролита равна аналитической концентрации. Кроме того, образование ионных пар в соли, продукте реакций нейтрализации, очень важно при определении положения равновесия. Анионы кислот в этилендиамине обычно слабо сольватированы, поэтому имеет значение гомосопряжение [см. уравнение (4-37)]. Так, соотношение активностей для фенола в этилендиамине Она / на а  [c.90]

    Из результатов определения уменьшения светопоглощения (при валовых концентрациях фторида в 10 раз больших, чем указанные выше) Бабко и Клейнер вычислили и значение константы диссоциации иона РеР  [c.590]

    Прямое измерение энтальпии этого процесса связано с некоторыми трудностями, обусловленными в основном небольшой степенью гидролиза карбонатов щелочных металлов, тогда как определение энтальпии обратного процесса — нейтрализации кислой соли — легко осуществимо. Определив энтальпию такого процесса Q , легко найти искомую величину энтальпии гидролиза карбонатов щелочных металлов (на 1 моль соли), используя константу диссоциации угольной кислоты по второй ступени К2, ионное произведение воды Л НгО и степень гидролиза аг  [c.73]

    Из этого следует, что в качестве ионных агрегатов, находящихся в химическом равновесии со свободными ионами, в растворе присутствуют ионные пары. Определенные таким образом значения константы диссоциации ионных пар позволяют установить соблюдение следующего уравнения для свободной энергии образования ионных пар в случае 1 1, [c.168]

    Неводные растворы еще мало исследованы, и значения констант диссоциации в них, необходимые, например, для оценки условий и возможности количественного определения, как правило, отсутствуют в литературе. Величины ионных эквивалентных проводимостей при бесконечном разбавлении, достаточно полно представленные для водных растворов, для неводных растворов также мало изуче- [c.68]

    Метод ЭДС используют для определения pH растворов, констант диссоциации электролитов, ионных произведений растворителей, констант гидролиза солей, растворимости веществ, коэффициентов активности ионов, констант устойчивости комплексных соединений. [c.81]

    В момент, когда будет оттитровано 99% сильной децимолярной кислоты, концентрация ионов водорода в растворе составит 0,1-0,01 = 1,0-10 моль/л, т. е. в растворе будет pH 3,0. Константа диссоциации слабой кислоты, рассчитанная по уравнению (10.21), показывает верхний предел величины, при которой возможно определение сильной кислоты с относительной погрешностью не более 1 % /С < 1 -10 -10 , т. е. /С < 1 -10 . Вполне понятно, что чем меньше константа диссо ации слабой кислоты и чем больше концентрация сильной, тем более точным будет определение сильной кислоты. Критерий 1-10 показывает, например, что относительная погрешность определения соляной кислоты в присутствии уксусной (Лен,СООН = 1.74-10 ) превысит 1%. В присутствии щавелевой (/ i = 5,6-10 ) или фосфорной (/ l = 7,6-10 ) кислоты относительная погрешность определения НС1 будет еще больше. [c.210]


    Метод может быть реализован в варианте прямой кондукто-метрии или кондуктометрического титрования. Прямую кондук-тометрию используют для определения концентрации растворов сравнительно редко, поскольку регистрируемый аналитический сигнал не избирателен электропроводность раствора — величина аддитивная, определяемая наличием всех ионов в растворе. Прямые кондуктометрические измерения успешно используют, например, для оценки чистоты растворителя, определения общего солевого состава морских, речных и минеральных вод, а также для определения таких важных для аналитической химии величин, как константы диссоциации электролитов, состав и константы устойчивости комплексных соединений, растворимости малорастворимых электролитов. [c.104]

    Рассмотрим метод э. д. с. для определения констант равновесия ионных реакций на примере константы диссоциации слабой кислоты НА  [c.130]

    Уравнение третьего приближения теории Дебая — Гюккеля имеет простую форму, но константа С лишена определенного физического смысла. Р. Робинсон и Р. Стокс (1948) предложили иную количественную интерпретацию роста lg/ "> при высоких концентрациях электролита. По теории Робинсона — Стокса формула второго приближения (III.55) должна применяться не к свободным, а ксольватированным ионам, мольная доля которых по отношению к свободному растворителю отличается от мольной доли ионов без сольватной оболочки. На это, в частности, указывают экспериментальные значения параметра а, превышающие сумму кристаллографических радиусов катиона и аниона. Таким образом, возникает необходимость установления связи между коэффициентами активности и / /( сольв)- При этом применяется тот же прием, как и при установлении связи между стехиометрическим коэффициентом активности бинарного электролита и истинным коэффициентом активности ионов при учете его частичной диссоциации [см. уравнения (111.21) — (III.26)]. Окончательный результат можно представить в виде [c.42]

    Для определения термодинамической константы диссоциации (см. 8.6) готовят растворы в широком интервале концентраций (0,001- 0,05 моль/л) и экстраполируют полученные для каждого раствора значения рКс= — gK на бесконечное разбавление (ионная сила / = 0). Типичная зависимость рКс = 1) представлена на рис. 10.7. Она значительно отличается от зависимости а = /(с), представленной на рис. 10.8. При уменьшении концентрации электролита Кс стремится к предельному значению Ка, а степень диссоциации — к единице. [c.152]

    Концентрационные элементы широко используют в химической исследовательской практике для определения многих важных констант растворимости, произведения растворимости, константы нестойкости комплексного иона, ионного произведения воды, констант диссоциации кислот и оснований, для нахождения концентрации ионов и т. п. [c.337]

    Прочность комплексного иона характеризуется константой диссоциации, называемой константой нестойкости комплексного иона. Так, ион [Ре(СЫ)б] диссоциирует по ступеням, каждая из которых описывается определенным значением константы диссоциации  [c.392]

    Метод определения скоростей всех составляюш,их реакций был разработан Дэвисом [37], который одновременно с Монком [106] определил значительное число констант диссоциации ионных пар в водных растворах. В данном случае для ионных пар МбдОз и МВгСНзСОО+ имеем следуюш,ие выражения для констант диссоциации  [c.158]

    Диэлектрическая постоянная кислотного растворителя — уксусной кислоты еще ниже —около 6,1 при 20 °С. Однако, как показали Кольтгофф и Брукенштейн [7, 8], в уксусной кислоте экспериментальное определение pH возможно, а полученные данные полезны для характеристики кислотно-основного взаимодействия в этом растворителе. Интересно заметить, что при низкой диэлектрической постоянной растворителя возможно следующее упрощение. Из-за высокой степени ассоциации ионная сила раствора может оказаться настолько незначительной, что активности ионов можно считать равными соответствующим концентрациям. Тем не менее сообщалось, что константы диссоциации оснований, определенные методом буферной емкости в уксусной кислоте, содержащей от О до 5 вес.% воды, свидетельствуют о межионных солевых эффектах, которые легко рассчитать по уравнению Дебая — Хюккеля, и об эффектах среды, которые согласуются с уравнением Борна [88]. Измерение кислотности в уксусной кислоте можно успешно осуществить с помощью электрода хлоранил — тетрахлоргидрохинон, используя в качестве электрода сравнения каломельный электрод, приготовленный на основе уксусной кислоты как растворителя [8]. [c.348]

    Следует помнить, что ионы в жидком аммиаке проявляют более слабые кислотные свойства, чем ионы НзО в воде, и что Кх — константа диссоциации но определению Брёнстеда — характеризует силу кислоты только лишь в определенном растворителе. Кроме того, уже было отмечено, что бессмысленно сравнивать константы диссоциации кислот в разных растворителях [26]. Так, сульфат аммония мало растворим, поэтому кислотность раствора серной кислоты в жидком аммиаке мала. [c.58]

    На основании кинетических данных по зависимости скорости полимеризации стирола от концентрации инициатора и определения константы диссоциации ионных пар методом электропроводности были оценены абсолютные константы скоростей роста цепи на ионных парах и свободных ионах [35, 167]. Скорость роста цепи при температуре 25 С возрастала в 350—400 раз при переходе от ионных пар (противоион Li , среда ТГФ) свободным ионам [36]. В работе Байуотера и Ворсфолда [60а] сообщается, что при полимеризации изопрена под действием литийорганических инициаторов константа диссоциации ионных пар на свободные ионы составляет 5-10 (на 3 порядка ниже, чем в случае стирола и бутадиена), а активность свободных ионов в актах роста цепи превосходит активность ионных пар в 14 ООО раз (табл. 12). [c.374]

    Межионные расстояния в водных растворах взяты из работ [15, 16], Для ионов кальция межионные расстояния (а) в уксусной кислоте не рассчитывались, так как не были найдены константы диссоциации их квазимолекул. При расчете аса + в муравьиной кислоте нам было неизвестно, ведут ли себя кальциевые соли как одноодновалентные электролиты или как двух-одновалентные электролиты. Рассчитанные межионные расстояния являются величинами весьма приближенными, так как константы диссоциации квазимолекул, определенные в одних и тех же растворителях различными авторами, колеблются в довольно значительных пределах. [c.86]

    Основные особенности процессов полимеризации неполярных мономеров в полярных средах, отличающие их от реакций, протекающих в присутствии каталитических количеств тех же самых или аналогичных полярных агентов, связаны с появлением в этих условиях свободных карбанионов. Значительно большая реакционная способность последних по сравнению с ионными парами делает заметным их участие в процессах полимеризации даже при невысоких значениях констант диссоциации ионных пар Кд. Факты, которые привели к заключению о наличии определенного вклада реакции роста на свободных ионах в процессах анионной полимеризации, были установлены Шварцем при исследовании системы стирол — нафталиннатрий — ТГФ в начале 60-х годов. Прежде чем к ним обратиться, отметим, что свободпоионный механизм полимеризации был сформулирован значительно раньше Хиггинсоном и Вудингом 1952 г.) на примерах процессов, протекающих в среде жидкого аммиака под действием амидов металлов I и П групп. Инициирующим [c.61]

    Проведенная нами статистическая проверка показала, что такая линейность действительно соблюдается с хорошей точностью ( г > 0,99, в составляет 1-5% от величины аЛ с) для водных растворов 47 электролитов. Полученные при этом значения констант диссоциации ионных пар К(рК) значительно отличаются от значений, полученных методами Фуосса или Шедловского , что неудивительно, поскольт у само определение ассоциатов ионных пар иное. [c.266]

    Формула (1) для определения константы диссоциации справедлива только для растворов слабых электролитов. В растворах сильных электролитов возникают силы электростатического взаимодействия ионов. Поэто1 у для сильных электролитов равновесные концентрации ионов в уравнении заменяются на соответствующие активности ионов. [c.138]

    Титрование многоосновной кислоты (или ее средней соли) до кислой соли. Кроме рассмотренных определений, имеется ряд других определений, как титрование солей слабых неорганических оснований (например Al l,) с образованием нерастворимого основания, титрование некоторых комплексных ионов (например SiF,.--) и т, д. Наиболее часто применяется титрование многоосновных кислот (или их средних солей) с образованием в точке эквивалентности кислой соли. Ранее было показано, что кислые соли могут иметь как кислую, так и щелочную реакцию, в зависимости от соотношения ступенчатых констант диссоциации. Поэтому для выбора индикатора необходимо в каждом отдельном случае рассчитывать pH соотЕСТствую-щей кислой соли. [c.313]

    Целью работы является определение степени и константы диссоциации уксусной кислоты при разных концентрациях. Для СН3СООН значения подвижностей ионов равны (пренебрегая зависимостью от температуры)  [c.71]


Смотреть страницы где упоминается термин Константа диссоциации иона HSO, определение: [c.269]    [c.153]    [c.474]    [c.28]    [c.308]    [c.374]   
Физическая химия растворов электролитов (1950) -- [ c.403 , c.404 ]

Физическая химия растворов электролитов (1952) -- [ c.403 , c.404 ]




ПОИСК





Смотрите так же термины и статьи:

Диссоциации константы, определение

Диссоциация определение

Константа диссоциации

Константа диссоциации иона HSO, определение кислоты в смешанном растворителе

Константа диссоциации иона HSO, определение методом

Константа диссоциации иона HSO, определение солей, уравнение

Константа диссоциации иона HSO, определение таблица

Константа диссоциации иона HSO, определение уравнение

Константа диссоциации иона слабой кислоты, электрометрическое определение

Константа диссоциации ионных пар

Константа ионов

Некоторые определения константы кислотной диссоциации иона аммония

Определение иония

Определение проводимости и констант диссоциации ионных пар



© 2025 chem21.info Реклама на сайте