Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константа ионизации определение

    Свойства и реакции 2-аминоэтансульфокислоты и ее производных. Как отмечено выше, таурин обладает слабо выраженными кислотными свойствами. Определение константы ионизации дало различные величины, причем два более новых значения [170] составляют 1,8-10" и 5,77-10 . Водные растворы таурина имеют диэлектрическую постоянную выше, чем у воды, причем она увеличивается пропорционально концентрации раствора 171]. Аналогичное действие оказывают другие солеобразные соединения, в которых положительные и отрицательные ионы, присутствуя в одной молекуле (двухполярные ионы), создают постоянные диполи. В кислом растворе таурин чрезвычайно устойчив к действию окисляющих агентов. Он не вступает в реакцию с серной кислотой, кипящей азотной кислотой, царской водкой или сухим хлором [172]. Однако при сплавлении таурина с углекислым натрием и азотнокислым калием сера полностью превращается [c.134]


    Определим pH 0,01 М раствора уксусной кислоты Со = 0,01 М Кл = = 1,754 10 М. Поскольку константа ионизации много меньше концентрации, можем воспользоваться для определения степени диссоциации выражением (14.37), применяя которое, находим  [c.240]

    Определение констант равновесия комплексообразования. Спектрофотометрический метод широко применяется не только для определения констант ионизации кислот и оснований, но и может быть использован для нахождения констант равновесия процессов образования различных комплексов. На примере взаимодействия иода с циклогексеном в гексане рассмотрено применение УФ-спектроскопии для определения константы равновесия реакции образования комплексов донорно-акцепторного типа. На рис. 13 приведены УФ-спектры растворов иода и циклогексана в гексане и их смеси. Поглощение в области 300 нм связано с образованием комплекса с переносом заряда  [c.26]

    Максимальнее число ионов водорода, образующихся из одной молекулы кислоты, определяет ее основность. Многоосновные кис-лоГЫ диссоциируют ступенчато, последовательно отщепляя один ион водорода за другим, и каждая ступень ионизации характеризуется определенной константой ионизации. Так, для ортофосфор-ной кислохы константы ионизации каждой ступени при 25 С равны  [c.252]

    В соответствии с принятым определением заместители, повышающие электронную плотность на реакционном центре и, тем самым, затрудняющие отрыв протона при диссоциации карбоксильной группы, понижают константу ионизации соответствующей замещенной бензойной кислоты и характеризуются отрицательным значением а. Заместители, понижающие электронную плотность на реакционном центре, имеют ст > 0. [c.128]

    Об этом свидетельствуют кривые потенциометрического титрования, снятые через 168 час., т. е. после установления ионообменного равновесия (рис. 40), и кажущиеся константы ионизации, определенные по формуле [c.101]

    Для кислот, обладающих еще меньшими константами ионизации, определение конечной точки титрования в водных растворах становится ненадежным. [c.412]

    ЛОТЫ с целью определения ее первой константы ионизации (обратной константы третьей реакции в матрице (1)). [c.127]

    Определение констант ионизации [c.278]

    Здесь необходимо указать, что символы Е, ЕН, ЕНг и т. д. описывают только состояние ионизации определенных групп фермента, контролирующих ферментативную реакцию. Ионизация остальных групп белковой глобулы здесь вообще не рассматривается. Согласно схеме (10.1) активный центр фермента имеет две ионогенные группы, причем константы их диссоциации в свободном ферменте и в фермент-субстратном комплексе являются различными (в принципе, схема (10.1) может описывать и реакцию фермента, активный центр которого содержит четыре ионогенные группы, две функционируют в свободной форме фермента и две — в фермент-субстратном комплексе). [c.219]


    Основой для построения уравнения Гаммета послужила идея о том, что скорости реакций определенного круга соединений могут быть связаны с константами равновесия этих реакций. Важную роль сыграло наблюдение, согласно которому скорости многих реакций соединений типа I с заместителем К в л - или п-положениях к реакционному центру изменяются симбатно или антибатно константам ионизации соответствующих бензойных кислот  [c.165]

    Гаммет считал, что уравнения (VI, 13) и (VI, 14) справедливы как для П-, так и для ж-замещенных бензольных производных. Это означает, что константа р, вычисленная при использовании ст-констант /г-заместителей (ст ), будет равна р, вычисленной при использовании ст-констант ж-заместителей. Более подробный анализ показывает, что в общем случае это не так. Значения ст-констант для мета-и пара-заместителей, определенные из констант ионизации замещенных бензойных кислот при 25 С, приведены в табл. 12 [c.167]

    Очевидно, маскировкой достигают той же цели, что и при осаждении мешающего иона в виде того или иного малорастворимого соединения, а именно настолько сильно понижают концентрацию этого иона, что он данным реактивом не осаждается и потому определению не мешает. Однако маскировкой эта цель достигается несравненно легче и быстрее, так как не нужно фильтровать раствор и промывать осадок все сводится лишь к прибавлению соот-ветсг вующего маскирующего агента . Посмотрим теперь, от чего зави ит возможность маскировки того или иного иона. Здесь придете прежде всего отметить влияние тех же двух факторов, на котоэые указывалось при рассмотрении вопроса о влиянии pH на полноту осаждения, а именно величины произведения растворимости осал<даемого соединения и константы ионизации продукта реакции, т. е. образующегося комплексного иона. [c.95]

    Величина /Си, называется ионным произведением воды. При 25°Сэта величина близка к 10 М . При других температурах этим значением пользоваться нельзя. Ионизация воды — эндотермический процесс, и поэтому Kw растет с увеличением температуры. Например, при 0°С ионное произведение воды равно 0,114 10" М , а при 100°С — 55 10 М . Заметим, что ионное произведение воды нельзя непосредственно использовать для сравнения кислотных свойств воды с другими кислотами. Эта величина отличается от констант ионизации своей размерностью. Чтобы получить сопоставимую с константами ионизации кислот величину, нужно в уравнении реакции (15.4) рассматри-рать одну молекулу Н О как растворитель, а другую как ионизуемую кислоту и выразить концентрацию последней в единицах молярности. Поскольку речь идет о почти чистой воде, то в 1 л содержится 1000/18 = 55,6 молей воды, т. е. Сн,о= 55,6 М. Поэтому константа ионизации воды равна /Сщ,/55,6. Например, при 25°С она будет равна 1,8 10 М. Для определения константы ионизации иона оксония НдО" необходимо записать уравнение ионизации для этого иона в виде [c.236]

    Логарифмы констант ионизации этих кислот, определенных в 50%-ном этаноле, оказались вполне подходя- [c.175]

    Для определения констант ионизации кислот разработаны разные методы. Простейший основывается на допущении, что в уравнении можно активности заменить концентрациями. Такое допущение дает в первом приближении хорошее значение константы ионизации, если измерение было выполнено для достаточно разбавленного раствора и растворитель имеет сравнительно большую диэлектрическую проницаемость. [c.337]

    Наиболее надежный метод определения термодинамической константы ионизации основан на измерении э. д. с. с помощью ячейки типа [c.338]

    Для полного исследования системы растворенное вещество — растворитель необходимо определить ряд электродных потенциалов для стандартных состояний. С практической стороны это представляет интерес для определения различных термодинамических величин, таких, как произведение растворимости, константы ионизации и коэффициенты активности. В теоретическом отношении электродные потенциалы в неводных растворителях имели большое значение в развитии теории Дебая — Хюккеля и других моделей процесса растворения. [c.372]

    Если прологарифмировать выражение (15.2), определяющее понятие константы ионизации кислоты, представить активности компонентов сопряженной пары кислота — основание в виде произведений концентраций на коэффициенты активности и ввести величины р/С и рн в соответствии с определениями (15.10) и (15.12), то путем несложных преобразований приходим к уравнению [c.242]

    Методика спектрофотометрического определения констант ионизации заключается в получении зависимости оптической плотности серии образцов с одной и той же концентрацией исследуемого-соединения в буферных растворах от pH при выбранной длине вол-вы Я. В результате получают набор дискретных значений оптической плотности при различных pH, из которых графически или расчетом определяют искомую константу, ионизации К (точнее р/С= Методика требует приготовления большого числа растворов исследуемого соединения и работы с достаточно концентрированными буферными растворами. Одновременное определение оптической плотности и величины pH раствора невозможно. Зависимость оптической плотности от pH дискретна, а увеличение числа экспериментальных точек связано с большим расходом веществ и затратами труда. [c.277]


    Определение констант ионизации на основе двухволновой спектрофотометрии свободно от ограничений и обладает более чем на порядок большей чувствительностью. Методика заключается в том, что вместо оптической плотности на одной длине волны исследуемого раствора с фиксированным значением pH по отношению к стандартному раствору осуществляется непрерывная автоматическая запись разности оптических плотностей — >2 одного и того же раствора на двух длинах волн (Я] и Хг) от значения pH, которое непрерывно меняется с помощью титратора. Запись в автоматическом режиме дает непрерывную зависимость разности оптических плотностей раствора АО 2 от pH. [c.277]

    Для большинства индикаторов положение максимумов поглощения основной и кислотной форм в шкале длин волн существенно различно. Определяя спектр поглощения индикатора при различных концентрациях в растворе сильной кислоты, можно найти зависимость интенсивности поглощения от концентрации кислоты. Подобную же зависимость устанавливают и для основания. Тогда, если определены спектры для нескольких растворов с известными значениями pH, рассчитывают величину рКа- Спектрофотометри-руя содержащий индикатор раствор с неизвестным pH, находят. концентрации кислоты и основания по определенным выше спектрам и спектрам поглощения стандартных растворов величины pH рассчитывают затем с привлечением константы ионизации (определение коэффициентов активности см. главу XII). [c.128]

    Рассмотрение общего кислотно-основного катализа как реакции передачи водорода , вызванной кислотами и основаниями, включает, естественно, вопрос о связи каталитической сплы кислот с их константой ионизации. Еще раньше было устаповлено, что между этими двумя константами существует определенная связь. Тейлор [33] предложил первое количественное соотношение, в котором кислотпо-каталитическая константа кислоты /iha была пропорциональна K , т. е. корню квадратному из константы ионизации. Предложенное позднее [34] уравнение Бренстеда для общего кислотно-основного катализа широко используется как эмпирическое соотношение  [c.484]

    Раствори сильных электролитов. Строго говоря, закон действия масс применим лишь к идеальным газам и идеальным растворам, поскольку ои имеет статистическое обоснование, которое не учитывает действие силовых полей частиц. Опыт показывает, что он ирименим и к разбавленным растворам слабых электролитов и неэлектролитов. Так, нанример, константа ионизации уксусной кислоты нри изменении концентрации остается постоянной. Но даже для очень разбавленных растворов сильных электролитов уравнение (2.72) неприменимо и определенная с помощью вытекающих из (2.72) соотношений (2.74) и (2.76) константа ионизации зависит от концентрации  [c.250]

    В качестве примера рассмотрим определение константы диссоциации и констант ионизации 2-нафтола (в общем случае ароматических соединений типа АгХН, где Х = 0, Ы, 5)  [c.77]

    VIII. Для окончательных выводов о строении исследуемого соединения получают 1—2 производных и проводят, если необходимо, дополнительные определения (эквивалентный вес, константы ионизации, активный водород и др.). Полученные данные сравнивают с литературными. [c.279]

Рис. 106. Определение констант ионизации ионогенных групп активного центра клострипаина, контролирующих реакцию гидролиза этилового эфира Ы-бензоил-1-арги-нина [45] Рис. 106. <a href="/info/426731">Определение констант ионизации</a> ионогенных <a href="/info/1376395">групп активного центра</a> <a href="/info/489807">клострипаина</a>, <a href="/info/96535">контролирующих реакцию</a> <a href="/info/1036552">гидролиза этилового эфира</a> Ы-бензоил-1-арги-нина [45]
Рис. 109. Определение констант ионизации ионогенных групп активного центра клострипаина, контролирующих реакцию гидролиза Рис. 109. <a href="/info/426731">Определение констант ионизации</a> ионогенных <a href="/info/1376395">групп активного центра</a> <a href="/info/489807">клострипаина</a>, <a href="/info/96535">контролирующих реакцию</a> гидролиза
    При определении относительной силы сильных кислот вроде НС1 или H2SO4 в водной среде константы ионизации получаются бесконечно большими, что обусловлено основностью воды. Если рассмотреть реакцию [c.338]

    По методу Коссякова и Харкера, для определения константы ионизации кислоты необходимо вычислить величины и С, которые должны быть постоянными для всех кислородсодержащих кислот в данном растворителе. [c.345]

    Величина может быть определена, если известны углы между связями и длины связей в исследуемых молекулах расчеты до-Еольно трудоемкие. Если 1Л,- известна для какой-либо кислоты, то можно найти С по изменению свободной энергии, вычисленной по р/С, определенной для этой кислоты на опыте. Для ортофосфор-ной кислоты Коссяков и Харкер использовали первую константу ионизйции. По величине С они рассчитали константы ионизации и других кислородсодержащих кислот (всего еще для 26 кислот) и нгшли, что в среднем отклонение вычисленных lg/ от найденных экспериментально не превышает 0,89. [c.345]

    Для определения константы ионизации иона оксония-Н3О+ запишем уряннение его ионизации [c.274]

    Определим pH раствора уксусной кислоты, б ° = 0,01 моль/л К а = = 1,754-10 моль/л. Поскольку константа ионизации много меньп1е концентрации, можно воспользоваться для определения степени диссоциации выражением (14.37), применяя которое, находим [c.278]

    Поскольку ионы он- образуются не только на этой стадии, для определения степени диссоциации необходимо воспользоваться формулой (14.39), где А — это ион Н2Р04 . Рассматриваемая ступень гидролиза определяется второй константой ионизации Н3РО4, и константа гидролиза /Сь= 10 /(6,3-Ю ) = = 1,59-10 моль/л. Применяя (14.39), где Св--концентрация ОН-, присутствующего в большом избытке по сравнению с Н2РО4-, равная 3,9-10- моль/л, находим а = 4,07- 0-  [c.279]


Смотреть страницы где упоминается термин Константа ионизации определение: [c.26]    [c.99]    [c.286]    [c.302]    [c.129]    [c.277]    [c.278]    [c.280]    [c.281]    [c.408]    [c.276]   
Спектрофотометрический анализ в органической химии (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Константа ионизации



© 2024 chem21.info Реклама на сайте