Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны металлоорганических соединений

    Кетон Металлоорганическое соединение Хлорангидрид кислоты Выход Литера- тура [c.62]

    Кетон Металлоорганическое соединение [c.64]

    В переносе могут участвовать не только кратные связи, но и простые, что приводит как к присоединению, так и к расщеплению некоторых связей. 1,4-Присоединение металлоорганических соединений к а, (3-ненасыщенным кетонам изображается следующим механизмом  [c.181]

    Превращение ацилгалогенидов в кетоны с помощью металлоорганических соединений [1300]. [c.227]


    Превращение ангидридов, сложных эфиров и амидов карбоновых кислот в кетоны с помощью металлоорганических соединений [1319]. [c.229]

    Превращение металлоорганических соединений в кетоны, альдегиды, сложные эфиры или амиды. [c.459]

    Присоединение металлоорганических соединений к альдегидам и кетонам. [c.364]

    Превращение солей карбоновых кислот в кетоны под действием металлоорганических соединений. [c.373]

    Присоединение винильных или алкинильных металлоорганических соединений к альдегидам или кетонам [c.435]

    Получение из сложных эфиров, альдегидов й кетонов с помощью металлоорганических соединений мы рассмотрим при изучении соответствующих разделов органической химии. [c.99]

    Присоединение металлоорганических соединений к карбонильной группе альдегидов и кетонов рассмотрено на стр. 195. [c.127]

    Для альдегидов и кетонов предложено так же много защитных групп, как и для аминов. Наиболее важные методы защиты карбонильных соединений заключаются в их превращении в ацетали, кетали и их тиопроизводные. За немногими исключениями (защитные группы I, 2, 3, 17), они более или менее устойчивы к действию щелочей и металлоорганических соединений, но гидролизуются минеральными кислотами с выделением исходных карбонильных соединений. Защитные группы, содержащие серу, также могут расщепляться в нейтральной среде. [c.257]

    НОН [2361, служащий промежуточным соединением при производстве витамина А и каротиноидов. Такого рода конденсация в сочетании с окислением первичных спиртов по Оппенауэру применяется, например, для получения р-С1в-кетона (см. XIV в разделе Реакции с металлоорганическими соединениями , стр. 129) из р-С -спирта (см. XIX в разделе Реакции с этилформиатом, формальдегидом или их производными , стр. 130) в одну стадию 2181. В табл. 7 приведены некоторые кетоны, используемые для [c.147]

    Полярные соединения — например, спирты, альдегиды, кетоны, простые и сложные эфиры, олефины, хиноны, ароматические, гетероциклические и металлоорганические соединения, дисульфиды, диселениды, сера, неорганические комплексы, углеводы, протеины и стероиды — часто растворимы в ДМФА [2, 17], ДМАА [2, 17], суль( лане [17] и ДМСО [4, 17]. Парафины, насыщенные циклические соединения, неполярные газы, спирты и кислоты с длинной цепью очень мало растворимы в рассматриваемых растворителях [2, 4]. Поляризуемость растворенных веществ оказывает существенное влияние на растворимость неионных соединений в полярных апротонных растворителях. [c.9]


    Поэтому в рамках НПО Реактив нами разработаны детонаторы, сочетающие в себе высокую эффективность металлоорганических соединений. Кроме того, созданы метал юкомплексные катализаторы, имитирующие свойства оксидазы, которые катализируют реакции селективного окисления кислородом воздуха, углеводородов нефти в соответствующие спирты и кетоны в жидкой фазе при низкой температуре (80-90°С). [c.11]

    Органическая часть сернокислотных отходов состоит из углеводородов, эфиров, спиртов, альдегидов, кетонов сульфо- и карбоновых кислот, сульфонов и других сернистых соединений, солей азотистых оснований, смол, асфальтенов, карбенов и карбоидов [5]. В состав некоторых видов сернокислотных отходов входят также различные металлы (медь, никель, ванадий, железо и др.) в виде продуктов коррозии и металлоорганических соединений. [c.40]

    Наиболее широко используются металлоорганические соединения — R—Li, R—Na, R—MeHal(Me — Mg, Zn, d), восстанавливающие альдегиды, кетоны и производные кислот, не содержащие подвижный атом водорода. На основе формальдегида получают первичные спирты другие альдегиды и эфиры муравьиной кислоты образуют вторичные, кетоны и сложные эфиры — третичные спирты  [c.204]

    Кетоны обычно не получаются при использовании в качестве металлоорганического соединения реактива Гриньяра [1314], так как первоначально образующийся кетон взаимодействует со второй молекулой RMgX, давая алкоголят третичного спирта (т. 3, реакция 16-33). Кетоны все же были приготовлены таким образом, но при низких температурах, обратном порядке смешения реагентов (т. е. при добавлении реактива Гриньяра к ацилгалогениду, а не наоборот), избытке ацилгалогенида и т. д., но выходы при этом обычно низки, хотя сообщается о высоких выходах продуктов при проведении реакции в ТГФ при —78 °С [1315]. По этой реакции можно синтезировать также и некоторые кетоны, инертные по отношению к реактиву Гриньяра в силу стерических или других причин (см., например, [1316]). Повышения выхода кетона за счет третичного спирта можно добиться при использовании катализаторов, которыми служат галогениды некоторых металлов, в частности галогениды железа (И1) и меди(1) [1317]. Для реакций с участием этих катализаторов предложены как свободнорадикальный, так и ионный механизмы [1318]. Успешно протекают реакции с Rs uLi, Ra d и комплексами родия, так как эти соединения, как правило, не взаимодействуют с кетонами. [c.228]

    Реактивы Гриньяра присоединяются к одной связи С = 0 СОг так же, как к карбонильной группе альдегида или кетона [355]. При этом, конечно, образуется соль карбоновой кислоты. Реакцию обычно проводят, выливая раствор реактива Гриньяра на сухой лед. Таким путем получены многие карбоновые кислоты, и эта реакция наряду с последовательностью реакций 10-103 и 16-5, а также с реакцией 18-9 является важным методом увеличения длины углеродной цени на один атом. А поскольку меченый СО2 коммерчески доступен, то это и хороший метод синтеза карбоновых кислот с меченой карбоксильной группой. Применялись и другие металлоорганические соединения (RLi, RNa, R aX и т. п.), но значительно реже. Образование соли карбоновой кислоты при прибавлении СО2 к реак- [c.375]

    Эта реакция, следовательно, представляет собой метод превращения металлоорганического соединения R M в альдегид R HO (см. также т. 2, реакцию 12-31), а-кетокислоту [635], кетон R OR (см. также т. 2, реакцию 12-31), а-гидрокси- или р-гид-роксикетон. В каждом случае связь = N гидролизуется до С = 0 (реакция 16-2). [c.430]

    Реакция металлоорганических соединений с кислотами 12-39. Декарбоксилирование карбоновых кислот 12-40. Расщепление третичных алкоголятов 12-44. Расщепление неенолизующихся кетонов [c.408]

    Замещая, например, в соляной кислоте хлор бромом, иодом или цианом или в аммиаке — азот фосфором или мышьяком, Ш. Жерар и его последователи выводили из этих основных типов производные. Обменивая типический водород на остатки (радикалы), Ш. Жерар производил от типа Нг углеводороды, металлоорганические соединения, альдегиды, кетоны и др. от типа НС1 — галогено- и цианопроизводные от тина НзО замещением водорода этилом и ацетилом получал следующие соединения  [c.167]

    Описываемый метод ацилирования ортоэфирами предложен Чичибабиным [3, 6]. Синтез проводят кипячением компонентов (1 1) в эфире или более высококипящих растворителях. Иногда для успешного протекания реакции после добавления ортоэфира к раствору металлоорганического соединения необходимо отогнать легкокипящий растворитель. Часто выделяют не сами ацетали, а соответствующие альдегиды или кетоны после гидролиза реакционной смеси. Реакция может не останавливаться на стадии образования ацеталей, так как последние в определенных условиях также способны обменивать алкоксигруппу на органический радикал металлоорганического соединения. Труднее всего реагируют метнленацетали и ацетали алифатических альдегидов, легче — ацетали ароматических альдегидов и наиболее легко — кетали [4]. В некоторых случаях замене могут подвергаться все алкоксигруппы ортоэфира, в результате чего образуется углеводород [5]. [c.120]


    Привлечение металлоорганических соединений открывает путь к многосторонним препаративным методам получения кетонов и альдегидов. Принцип ацилирующего расщепления связей С—М (М-металл) хлорангидридами кислот имеет разнообразное применение, как, например, в случае кадмийорганических соединений (Ж-П ), оловоорганических соединений 8пК4. при катализе палладием [На] и силанами (НзС)з81—К (К-346). Реактивы Гриньяра при особых условиях можно проацилировать с образованием кетонов не только хлорангидридами кислот (Ж-1З2), но и легкодоступными ацилимидазолидами по Штаабу [c.115]

    В живых организмах [80г] множество высокоселективных превращений также проходит по механизму одноэлектронного переноса. По этому же механизму реагируют металлоорганические соединения меди и переходных металлов. Фотохимические превращения [81] также осуществляются через радикальные промежуточные стадии, как, например, циклоприсоединение 1,3-дикарбонильных соединений к олефинам (переходное триплетное состояние) (М-19а), С—С-сочетание галогенарома-тических соединений (Л-316), расщепление кетонов по Норишу типа I (К—СО К со -Ь К к + к + со к—к + СО) (К-36), [c.241]

    Витамин А синтезирован несколькими группами исследователей из р-С18-кетона (см. XIV в разделе Реакции с металлоорганическими соединениями , стр. 128) по реакции Реформатского [17, 96, 322]. Дегидратация образующегося Сго-оксиэфира XLV1 под действием кислотных реагентов приводит главным образом к этиловому эфиру кислоты, соответствующей витамину А в ретроформе [96. В результате гидролиза этого эфира в кислоту, соответствующую витамину А, и последующей обработки треххлористым фосфором получеи загрязненный хлорангидрид кислоты, отвечающей витамину А, с нормальной системой сопряженных двойных связей. Хлорангидрид содержит смесь геометрических изомеров. Неочищенный хлорангидрид либо непосредственно восстанавливают алюмогидридом лития в витамин А, либо гидролизуют в кислоту, соответствующую витамину А [96]. Превращение ретросистемы в нормальную систему с сопряженными двойными связями рассматривается ниже в разделе Дегидратация, аллильная и прототропная перегруппировки (стр.204). [c.140]

    С18-Ацетиленовый гликоль (СЬХХШ) получен взаимодействием 2,2,6-триметилциклогексанона с Св-ацетиленовым карбинолом (СЬХХГУ) [11, 611. В результате гидрирования тройной связи алюмогидридом лития, последующего окисления двуокисью марганца и дегидратации п-толуолсульфокислотой получен р-С18-кетон (см. XIV в разделе Реакции с металлоорганическими соединениями , стр. 129), далее превращенный в витамин А методами, описанными в разделе Реакция Реформатского (стр. 139). [c.179]


Смотреть страницы где упоминается термин Кетоны металлоорганических соединений: [c.259]    [c.521]    [c.205]    [c.199]    [c.230]    [c.1435]    [c.1436]    [c.386]    [c.462]    [c.265]    [c.131]    [c.136]    [c.145]    [c.159]   
Препаративная органическая химия Реакции и синтезы в практикуме и научно исследовательской (1999) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Металлоорганические соединения



© 2025 chem21.info Реклама на сайте