Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление циклических насыщенных соединений

    В состав глицеридов входят насыщенные и ненасыщенные высшие кислоты алифатического ряда с четным числом углеродных атомов пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая и др. Большое количество самых разнообразных ненасыщенных жирных кислот входит в состав жиров, начиная с кислот, содержащих одну двойную связь, до клупанодоновой кислоты, у которой пять двойных связей. Разнообразие состава жиров обусловлено еще содержанием в них различных изомеров жирных кислот, циклических кислот, оксикис-лот (как насыщенных, так и ненасыщенных). В процессе хранения жиры нередко подвергаются глубоким изменениям, протекающим на воздухе в присутствии воды и ферментов, что обусловлено сложным химическим составом их и значительным количеством непредельных соединений. Растительные масла в основном состоят из эфиров ненасыщенных жирных кислот с одной двойной (олеиновой), двумя (линолевой) и тремя (линоленовой) двойными связями. Поэтому они весьма неустойчивы при хранении на воздухе, легко окисляются и прогоркают. Процессам окисления растительных масел обычно предшествует расщепление их (гидролиз) эфирных связей с накоплением свободных жирных кислот. При исследовании масла (жира) определяют кислотность, йодное число, число омыления и другие химические и физические показатели, которые характеризуют его качество и химическую природу. [c.178]


    ОКИСЛЕНИЕ ЦИКЛИЧЕСКИХ НАСЫЩЕННЫХ СОЕДИНЕНИЙ 535 [c.535]

    ОКИСЛЕНИЕ ЦИКЛИЧЕСКИХ НАСЫЩЕННЫХ СОЕДИНЕНИЯ 541 [c.541]

    Многочисленные опубликованные в литературе сообщения указывают на то, что подобные явления характерны и для других соединений, содержащих алифатические цепи углерода. Вдоль изобарной линии температуры возникновение заметного свечения, появление и исчезновение холодных пламен и воспламенение зависят от различных условий. Температуры незначительно меняются при изменении отношения топлива к воздуху, если топливо берется в избытке они заметно снижаются для высших м-пара--финов повышаются при замене парафина соответствующим олефином или нафтеном или при замене ненасыщенного циклического соединения типа циклогексена насыщенным типа циклогексана. При этом ароматические соединения намного устойчивее к окислению, чем парафиновые или нафтеновые соединения. Способность углеводородов к окислению тесно связана с детонационной характеристикой топлив, установленной нри моторных испытаниях. Поведение спиртов, альдегидов и эфиров подобно поведению парафинов, но отличается температурными порогами особенно низкие температуры характерны для этилового эфира. [c.251]

    Из табл. 5 видно, что многие параметры нефти связаны с величиной отношения п/ф, т.е. зависят от степени окисленности исходного ОВ. Наличию некоторых связей можно дать объяснение, другие пока не столь очевидны. Например, понятна связь значений п/ф с содержанием алканов в нефти. Очевидно, что доля метановых УВ возросла за счет низкого содержания нафтенов и аренов. Основным источником циклических соединений в нефти, вероятно, являются полиненасыщенные жирные кислоты. Но ненасыщенные кислоты крайне неустойчивы в присутствии кислорода и очень легко окисляются. Можно предположить, что в окислительной обстановке ненасыщенные кислоты, входящие в состав исходного ОВ, окисляются и не участвуют в процессах нефтеобразования, т.е. из такого ОВ образуется мало циклических структур. В этой обстановке в составе ОВ будут преобладать наиболее химически и биохимически инертные насыщенные жирные кислоты, которые и дадут в будущем высокопарафинистые нефти. [c.26]

    По аналогии с окислением индивидуальных насыщенных алифатических и циклических сульфидов до сульфоксидов различными способами могут быть получены из концентратов сульфидов и НСО. Окислителями могут быть кислород воздуха с катализаторами, азотная кислота, гидроперекиси органических соединений и надкислоты, множество сильных неорганических окислителей типа КМПО4, перекись водорода. Наиболее хорошо в препаративном плане изучена реакция окисл-ения сульфидов перекисью водорода в среде уксусной кислоты, уксусного ангидрида, ацетона и без растворителя с добавкой каталитических количеств сильных минеральных кислот — хлорной, серной. [c.29]


    В последнее время для повышения устойчивости масел к окислению используют так называемую гидроочистку. Этот процесс низкотемпературной гидрогенизации ведется над окисью молибдена на окиспоалюминиевом носителе [97]. Судя но опубликованным результатам, в процессе в основном снижается содержание серы и смол. В результате улучшается цвет, немного снижается вязкость масла. По-видимому, в этих условиях происходят насыщение водородом ароматических колец в смолистых веществах и такой же процесс в циклических сернистых соединениях с последующей деструкцией гидрогенизатов и выделением серы, кислорода и азота в виде НзЗ, Н2О и NHз. [c.255]

    Рассматривались [121] некоторые проблемы промышленного внедрения жидкофазного окисления нефтяных газов, в том числе бутана. В патентной литературе [185—188] также приводятся примеры жидкофазного окисления циклических и насыщенных углеводородов нормального строения для получения смесей кислородных органических соединений. На заводе Селаниз корпорёйшн в Пампа, Техас, работает промышленная установка жидкофазного окисления, на которой осуществлено окисление бутана [124] в растворителе путем барботажа воздуха через реакционную смесь в присутствии катализатора. Жидкофазное окисление бутана представляет сложную последовательность реакций, приводящих к образованию кислот, альдегидов, кетонов, спиртов и газообразных продуктов разложения в качестве основного продукта реакции образуется уксусная кислота. Следует учитывать, что дальнейшее окисление и конденсация продуктов реакции приводят к образованию многочисленных других соединений. [c.212]

    На основании этих данные некоторые исследователи считают, что насыщенные незамещенные f-лактоны вообще не существуют и что пределом величины лактонного цикла для незамещенных насыщенных оксикислот является 7-членное кольцо е-лактонов. Однако подобное заключение безусловно слишком смело и недостаточно обосновано, так как на основании неудавшейся попытки получить один определенный С-лактон одним определенным путем нельзя утверждать, что данный класс соединений вообще не существует, тем более, что имеются весьма реальные доказательства существования f-энантолактона (см. выше), хотя последний и не удалось выделить в чистом состоянии. Но до сих пор единственным методом получения насыщенных С-лактонов является окисление циклических кетонов типа суберопа кислотой Каре. Кроме того здесь необходимо отметить очень интересные работы Ружички по карбоциклическим соединениям с большим числом атомов углерода в кольце. [c.169]

    В организме яды могут подвергаться разнообразным превращениям Окислению, восстановлению, соединяться с другими веществами и пр. В результате таких превращений чаще образуются менее токсичные вещества, хотя известны и обратные случаи. Так, монофторацетат не ядовит, но в организме из него образуется фтортрикарбоновая кислота (вероятно, фторлимонная), уже в малых концентрациях токсичная. В литературе имеются попытки связать токсические свойства, или по крайней мере степень токсичности, вещества с его составом и строением [1]. Известно, например, что циклические органические соединения более токсичны, чем органические соединения с открытой цепью, имеющие в своем составе те же группы. Чем выше непредельность органического соединения, тем больше его химическая и биологическая активность ацетилен более. ядовит, чем этилен, а этилен — более, чем этан. Галоидозамещенные углеводородов жирного ряда отличаются более высокой токсичностью, чем углеводороды, из которых они образуются, например галоидопроизводные метана и бензола более токсичны, чем метан или бензол. Степень насыщенности также связана с токсичностью. Однако этих наблюдений недостаточно для выводов о зависимости токсичности соединений от его структуры и их можно рассматривать как ориентировочные. Следует иметь в виду, что токсичность вещества часто зависит от особенностей (строение, структура, функциональная деятельность и т. д.) соединений, находящихся внутри клеток организма, с ко- [c.36]

    В качестве побочных продуктов образуются R H2 H2 HO и R H2 O H3. Так, из пропена получен акролеин с выходом 88%. Олефины, не имеющие терминальной СН2-группы, превращаются в насыщенные карбонильные соединения, а окисление циклических олефинов сопровождается сужением цикла, например  [c.169]

Рис. 253. Сопоставление плотностей и показателей преломления окисленных насыщенных соединений и родственных им углеводородов /—парафиновые углеводороды 2—однокольцевые циклопарафн-ны г—однокольцевыо ароматические углеводороды -г—алифатические соединения, содержащие в своем составе С, Н и О 5—циклические однокольцевые соединения, содержащие в своем составе С, Н и О 6—однокольцевые ароматические соединения, содержащие в своем составе С, Н и О (по Джильмору, Мено и Шнейдеру ). Рис. 253. Сопоставление плотностей и <a href="/info/5513">показателей преломления</a> <a href="/info/1652190">окисленных насыщенных соединений</a> и родственных им углеводородов /—<a href="/info/11721">парафиновые углеводороды</a> 2—однокольцевые циклопарафн-ны г—однокольцевыо <a href="/info/7163">ароматические углеводороды</a> -г—<a href="/info/7147">алифатические соединения</a>, содержащие в своем составе С, Н и О 5—циклические однокольцевые соединения, содержащие в своем составе С, Н и О 6—однокольцевые <a href="/info/17539">ароматические соединения</a>, содержащие в своем составе С, Н и О (по Джильмору, Мено и Шнейдеру ).

    В Институте нефти АН СССР разработан потенциометрический метод определения сульфидов (включая и циклические) в присутствии других сернистых соедипений [56,57 ]. Он основан на окислении сульфидов уксуснокислым раствором КДОз до сульфоксидов. Конец титрования определяется по скачку потенциала, обусловленному появлением в растворе избытка ионов, 10 з. Применяемы для нефтепродуктов растворитель содержит окислитель (1С1), который до начала титрования переводит сероводород и меркаптаны, соответственно, в свободную серу и дисульфиды, пе мешающие определению сульфидов. Метод применим к любым нефтепродуктам прямой гонки с незнач тельным содержанием меркаптанов и непредельных углеводородов (тяжелые нефтепродукты перед анализом растворяются в обессеренном бензине или керос не). Достаточная селективность метода в отношении других сернистых соединений подтверждается величинами потенциалов необратимого окисления (относительно насыщенного каломельного электрода), найденными в нашей лаборатории [58, 59]. Потенциалы необратимого окисления меркаптана (Ен. о, в вольтах) дисульфидов, сульфидов, тиофенов и некоторых наиболее легко окисляющихся ароматических углеводородов приведены в табл. 1, 2 и 3 и графически изображены на рис. 1. Иодатометрический метод определения сульфидов не применим к анализу крщ ипг- и пресс-дести л латов, содержащих значительные количества непредельных углеводородов, а также для определения сульфидов 1 а л примеси к меркаптанам. [c.336]

    Этан-1,2-дисульфокислота приготовлена окислением этиленмер-каптана [473], этилентиоцианата [454, 474] и некоторых циклических соединений [475], содержащих атомы серы, связанные с соседними атомами углерода. Она образуется с небольшим выходом при сульфировании нитроэтана [477], нитрила и амида пропионовой. кислоты [476] и при электролизе сульфоацетата бария [478]. Действие насыщенного раствора щелочной соли сернистой кислоты на бромистый этилен [Збв, 454, 479] нри температуре кипения смеси ведет к получению этан-1,2-дисульфокислоты с выходом 95%. В небольших количествах аммониевая соль кислоты образуется также при обработке 1,1,2-трибромэтана кипящим раствором сернистокислого аммония [440]. [c.185]

    При помощи инфракрасной спектроскопии и аналитических методов можно определять структурные характеристики молекул, содержащихся во всех фракциях битумов, в частности в асфальтеновых, с расшифровкой типа конденсации, длины алифатических цепей, ароматичности и полярности> ИК-спектроскопию применяют также для изучения порфиринов ванадия и никеля, содержащихся в нефтях и битумах, для исследования кислородсодержащих функциональных групп в окисленных битумах. Таким методом показано, что омыляемые вещества битума содержат главным образом эфирные группы и что почти полностью отсутствуют ангидриды и лактоны. Методом селективного поглощения фракций показано различие химического состава битумов, полученных из разного сырья, а также изменение их строения по мере углубления окисления сырья. Растворы в четыреххлористом углероде или сероуглероде компонентов окисленных битумов (типов гель, золь — гель и золь), полученных разделением с использованием бута-нола-1 и ацетона и подвергнутых инфракрасному исследованию в области спектра 2,5—15 мк мкм) с призмой из хлористого натрия, показали, что в сильнодисперги-руемых битумах типа золь самое высокое содержание ароматических колец в каждом компоненте [480], Количество групп СНз почти одинаково в алифатических и циклических соединениях. Метиленовых групп парафиновых цепей значительно больше содержится в соединениях насыщенного ряда. Как правило, их число уменьшается при переходе битума от типа гель к типам золь — гель и золь. [c.22]

    Наиб, подробно изучены моноциклич. Ф.г. Насыщенные моноциклич. Ф.г. во многом напоминают по св-вам соответствующие ациклич. соединения. Так, соед. УШ и IX проявляют примерно одинаковую склонность к окислению, суль-фуризации, алкилированию. Оба реагируют со спиртами с разрывом связи Р —N. Однако ациклич. соед. легко обменивает на алкоксил все три амидогруппы, а циклические -только одну (экзоциклическую) др. фуппы также могут принимать участие в обмене, но в более жестких условиях. [c.161]

    Синтетические душистые вещества встречаются в очень многих классах органических соединений. Строение их весьма разнообразно это соединения с открытой цепью насыщенного и ненасыщенного характера, ароматические соединения, циклические соединения с различным числом углеродных атомов в цикле. Среди углеводородов вещества с парфюмерными свойствами встречаются довольно редко. Большинство душистых веществ содержат в. молекуле одну нли несколько функциональных групп. Сложные и простые эфиры, спирты, альдегиды, кетоиы, лактоны, иитропродукты — вот далеко не полный перечень классов химических соединений, среди которых разбросаны вещества с ценными парфюмерными свойствами. Для получения душистых веществ применяется самое разнообразное сырье, переработка которого основана на использовании большого числа химических процессов органического синтеза. Некоторые химические превращения приводят к введению заместителей в органические соединения нитрование, алкилирование, галоидирова-ние. К другой группе химических процессов относятся превращения, связанные с изменением функциональной группы веществ окисление, восстановление, этерификация, омыление. Третьи химические процессы приводят к изменению углеродного скелета химических веществ пиролиз, конденсация, изомеризация, циклизация, полимеризация. Ниже рассмотрены химические процессы, наиболее часто используемые в синтезе душистых веществ. [c.232]

    Как известно, ациклические кетоны окисляются обычно с расщеплением молекулы, в результате образуется смесь карбоновых кислот, а симметричные кетоны циклического ряда при окислении дают дикарбоновые кислоты с тем же числом атомов углерода в молекуле. Поскольку при окислении кетона В получается одно соединение Г, можно заключить, что кетон В — симметричный циклический кетон, а продукт его окисления Г — дикарбоновая кислота. Состав кислоты показывает, что кетон содержит шесть атомов углерода. Учитывая симметрию цикла, можно предположить, что кетон В — циклогексанон, а исходный насыщенный углеводород А — циклогексан. [c.75]

    Сера содержится п нефтях или ирямогоииых и крекииг-фрак-циях главным образом в виде элементарной серы, сероводорода, тиолов (меркаптанов), алифатических и ароматических сульфидов, дисульфидов, насыщенных циклических (алициклических) сульфидов и тиофенов. Дисульфиды могут появиться в нефтепродуктах в результате окисления меркаптанов элементарная сера может образоваться при окислении сероводорода. Присутствие элементарной серы в некоторых нефтях было доказано [14] в условиях тщательного отбора образцов, которые затем исследовались полярографическим методом. Относительное содержание различных сернистых соединений мончет изменяться в весьма широких пределах эти пределы зависят как от характера исходного материала (нефть, ирямогонпые или крекинг-фракции), так и от происхождения нефти. Из-за скудости опубликованных данных дать сколько-нибудь исчерпывающую картину в этом отношении невозможно. Ниже рассмотрены некоторые частные примеры, иллюстрирующие содержание серы в различных фракциях и продуктах. [c.341]

    В табл. 27 приводятся некоторые результаты, полученные [261 ] при гндроочистке в мягких условиях высококачественного нефильтрованного нейтрального масла и нефильтрованного брайтстока. В этом случае происходит незначительное насызценне циклических структур, но существенно улучшается цвет масла и снижается коксуемость его. Снижение числа нейтрализации указывает на значительное удаление кислородных соединений снпжешге йодных чисел свидетельствует о меньшем насыщении олефинов. При процессе в незначительной стененн протекает реакция гидрокрекинга, в результате чего несколько снижается вязкость масла. Обычно одновременно наблюдается небольшое повышение индекса вязкости в результате сочетания гидрирования с разрывом гетероциклических колец. Как правило, стабильность к окислению увеличивается. [c.440]

    Компоненты битумов могут содержать четыре основные группы [21] углеводородов насыщенные алифатические или парафиновые, нафтеновые или циклопарафиновые, содержащие ароматические кольца и алифатические с олефиновыми двойными связями. Все четыре основных типа структур могут присутствовать в одной молек пе, особенно в высокомолекулярных фракциях. Как правило, атомарное отношение углерод водород увеличивается с возрастанием молекулярного веса фракций, что указывает на повышение содержания ароматических углеводородов в высокомолекулярных фракциях. Предполагается, что большая часть серы содержится в циклических соединениях. Азот содержится в виде порфириновых или металлпорфириновых комплексов, которые являются активными катализаторами окисления. В окисленных битумах содержится кислород в виде карбонильных, карбоксильных и гидроксильных производных. Олефины обычно содержатся только в битумах, получаемых процессами термического крекинга. [c.206]

    При установлении структуры циклических соединений наибольшие трудности возникают в тех случаях, когда в состав соединений входят несколько насыщенных циклов и деструкция путем селективного окисления оказывается невозможной из-за отсутствия функциональных групп. Типичным примером может служить квебраха-мин, алкалоид ряда индола (разд. 27-13), представляющий собой сложную полициклическую систему [c.538]

    Влияние антидетонаторов было изучено наиболее подробно на примере тетраэтилсвинца. Было найдено, что это вещество тормозит цепную реакцию, по которой происходит окисление углеводородов [26]. Давно уже было выдвинуто предположение, что антидетонаторы уничтожают перекисные соединения [27]. С химической точки зрения эта гипотеза вполне вероятна. Она легко объясняет влияние антидетонаторов, которое выражается в торможении реакций разветвления цепей при наличии пере-кисных соединений. Не следует предполагать, что действие антидетонаторов заключается в уничтожении самих носителей цепи. Действительный механизм реакций, в которые входит тетраэтилсвинец, пока еще не выяснен. Само по себе соединение это не тормозит ни фотохимического скисления ацетальдегида [28] при комнатной температуре, которое, как предполагают, является реакцией, развивающейся с помощью радикалов, ни окисления пентана [29] при 265 С, где реакция в основном управляется, очевидно, перекисными разветвлениями. После добавления в горючую смесь тетраэтилсвинца в двигателе было спектроскопически обнаружено присутствие атомного свинца 30]. Можно считать, что перекиси входят в реакцию с РЬ, так же как и с РЬО и РЬО,, и можно предложить механизм цепной реакции, включающий в себя либо попеременное возникновение РЬ и его окисей, либо, как это было предложено Эгертоном и Гэйтсом [21, 31], одних только окисей. Увеличение степени сжатия, при которой начинается детонация под влиянием тетраэтилсвинца, было изучено для большого числа углеводородов [32]. Для парафинов и ароматических соединений с насыщенными боковыми цепями увеличение критической степени сжатия при добавлении равных количеств тетраэтилсвинца обычно тем больше, чем выше критическая степень сжатия для чистых веществ. В случае непредельных циклических соединений влияние это было отрицательным. [c.405]

    В связи с этим Петров сосредоточил внимание своей группы на изучении процесса окисления высококипящих фракций нефти. Окисляющим агентом в этом процессе является кислород воздуха, но реакция окисления идет только в присутствии катализатора и при повышенной температуре. При этом кроме нужных насыщенных кислот алифатического ряда с неразветвленной молекулой могут образоваться ненасыщенные кислоты, окси-кислоты и циклические соединения. Образование этих побочных продуктов значительно ухудшает экономические показатели процесса. Петров установил, что высококачественный продукт с наименьшим количеством примесей может быть получен лишь при окислении вы-сокоочищенного масла, освобожденного от ароматических и непредельных углеводородов, а также сернистых и азотистых соединений. Аналогичная глубокая очистка соляровых дистиллятов серной кислотой уже была разработана Петровым для синтеза сульфокислот контакт . Таким образом, в этой стадии новый процесс уподоблялся указанному синтезу, но в результате получался не один, а два готовых продукта — синтетические жирные кислоты и сульфокислоты контакт . [c.66]

    Физические и химические свойства кефтяных продуктов. Нефть и продукты ее перегонки имеют сложный химический состав. Они содержат смесь углсЕодородов ряда парафинов (С Н2 2)> т. е. насыщенных углеводородов, олефинов — непредельных углеводородов (ряда этилена Hj = Hj), нафте-нов — циклических углеводородов (полиметиленов Hj ) помимо этого, нефтяные масла содержат также от 1,5 до 5% нафтеновых кислот. Легкие к средние масла (соляровое, веретенное) могут содержать 1,5—2% смоляных веществ в машинных и цилиндровых дистиллятах количество нейтральных смоляных веществ, которые придают цвет дистиллятам, достигает 4—10%. В состав этих продуктов входят также сера, азотистые соединения и другие вещества, они могут содержать и примеси, образующиеся под влиянием солнечных лучей (окислением). [c.112]

    Энергия активации начальных макростадий процесса автоокисления дихлордиэтилового эфира, определенная в данной работе, мало отличается от энергии активации при окислении дифенилэтана 121,4 кДж /моль 3], тогда как в случае симметричного циклического эфира, 1,4-диоксана. а возрастает до 418,75 кДж/моль. Снижение реакционной способности в процессе автоокисления циклических соединений известно как для диоксана, так и для насыщенных углеводородных циклов [6]. [c.112]


Смотреть страницы где упоминается термин Окисление циклических насыщенных соединений: [c.212]    [c.317]    [c.45]    [c.345]    [c.124]    [c.208]    [c.29]    [c.159]    [c.393]    [c.232]    [c.170]   
Смотреть главы в:

Химия и технология основного органического и нефтехимического синтеза -> Окисление циклических насыщенных соединений




ПОИСК





Смотрите так же термины и статьи:

Насыщенные соединения

Циклические соединения циклических соединений



© 2025 chem21.info Реклама на сайте