Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оптическое возбуждение. Возбуждение молекул оптическое

    Большое значение, особенно в связи с развитием лазерной техники, приобрел оптический метод изучения релаксационных процессов, осно-. ванный на измерениях интенсивности ИК-спектров испускания при наличии столкновений. При достаточно низких давлениях путем оптического возбуждения получаются молекулы, находящиеся на определенном колебательном (г ) рг вращательном (/) уровнях. В этом случае, ввиду от- [c.182]


    В последнем случае переход оптически активной возбужденной молекулы в метастабильное состояние представляет собой один из случаев тушения флуоресценции, которое обычно заключается в происходящем при столкновении возбужденной молекулы с какой-либо другой молекулой переходе в иное (оптически неактивное) электронное состояние (см. ниже). В рассматриваемом случае таким состоянием является метастабильное [c.361]

    Известно, "что методы оптической спектроскопии, использующие колебательные (ИК) или электронные (УФ) возбуждения молекул, позволяют охарактеризовать связи между атомами и сделать выводы о наличии тех или иных атомных группировок в молекуле. Если известна зависимость между величиной поглощения излучения и концентрацией, то можно определить концентрацию исследуемых молекул. [c.278]

    Термин оптическое возбуждение означает переход атомов или молекул в определенное квантовое состояние в результате селективного иоглощения узкополосного излучения. Б то время как в атомной спектроскопии методы оптического возбуждения успешно используются уже много лет, их применение для молекул наталкивается иа большие сложности. Причина этого заключается в большой сложности молекулярных спектров и недостатке подходящих источников для достаточно интенсивного, но селективного возбуждения. Ситуация резко изменилась после введения лазеров в молекулярную спектроскопию с тех пор в литературе можно было заметить быстрое увеличение числа публикаций по оптическому возбуждению молекул [168]. [c.287]

    В электронно-возбужденном состоянии молекула находится в течение 10 —10 сек, после чего в результате потери энергии она переходит в триплетное (метастабиль-ное) состояние, отличающееся от исходного невозбужден-ного направлением спина оптически активного электрона. Продолжительность жизни молекул в триплетном состоянии составляет от 10 до 10 и более сек. [c.17]

    По Теренину [163], можно считать, что триплетные состояния индивидуальных молекул группируются в блоховскую орбиту, которая служит зоной проводимости. Оптические возбуждения переводят молекулы в их первое возбужденное синглетное состояние, из которого они термически вырождаются в триплетную зону проводимости. Розенберг [147] предположил, что для этого молекулы должны иметь один или несколько квантов колебательной энергии, чем можно объяснить температурную зависимость фотопроводимости. Так как блоховская орбита триплетных состояний может иметь энергию, отличную от энергии исходных триплетных состояний молекул, то нельзя рассчитывать на точное согласование энергии активации проводимости и энергии триплетного состояния. [c.54]


    В последнее время в иммуноферментном анализе получили распространение субстраты, которые образуют продукты, регистрируемые флуориметрическим методом. Молекула при поглощении фотона переходит из основного электронного состояния в возбужденное. Возбужденная молекула может вернуться в основное состояние, при этом избыток энергии перейдет в теплоту, но может произойти обратный процесс перехода электрона на основной уровень, сопровождающийся выделением кванта света, который носит название флуоресценции. Благодаря частичной потере энергии при переходе молекулы из возбужденного состояния в основное длина волны испускаемого света всегда больще длины волны поглощаемого света. Как отмечалось выше, оптическая плотность раствора определяется следующим соотношением  [c.60]

    Если при окислении бензина в последних порциях смеси накапливается много перекисных соединений, то свыше некоторого критического значения происходит их взрывной распад с образованием так называемого холодного пламени . Продуктами сгорания в этом пламени являются главным образом альдегиды и СО, так что и энергия, выделяемая в холодном пламени , составляет лишь малую часть от полной теплоты сгорания топлива (5—10%) с соответственно незначительным повышением температуры. Свечение холодного пламени обязано оптическому возбуждению молекул формальдегида [c.66]

    Исследование состава активного азота в состоянии длительного послесвечения при помощи оптической спектроскопии, спектров ЭПР и других методов показало, что главной составной частью его являются атомы N в основном состоянии S) и электронно-возбужденные метастабильные молекулы No (4 2I), обладающие энергией 6,17 эв. Имеются также указания на присутствие в активном азоте колебательно-возбужденных молекул Nj в основном состоянии, которые образуются в процессе [c.33]

    Предположим, что жидкий раствор облучается пучком света постоянной интенсивности. Если оптическая плотность достаточно мала, то скорость поглощения света /д будет постоянной по всему объему. За время, достаточно долгое по сравнению с временем жизни флуоресценции, устанавливается стационарное состояние, в котором скорость образования синглетных возбужденных молекул уравновешивается скоростью их исчезновения. Если в верхних [c.58]

    Изучение оптических переходов связано с расчетом возбужденных состояний молекул, который в силу его сложности мало освоен. Поэтому можно считать, что теория оптических свойств молекул только создается. Мы познакомим, читателя с некоторыми квантовохимическими подходами к решению спектроскопических задач, не затрагивая по существу всего того многообразия результатов Экспериментальных исследований, о которых упоминалось выше. [c.130]

    Химическая диссоциация может происходить вследствие безызлучательного перехода возбужденной молекулы, если энергия результирующего состояния достаточна для его диссоциации. При этом величина этой энергии может быть меньше, чем энергия диссоциации для состояния, заселяющегося при поглощении излучения. Для двухатомной молекулы состав продуктов диссоциации не зависит от механизма диссоциации. Следовательно, степень возбуждения фрагментов, образующихся в результате предиссоциации при энергии ниже порога оптической диссоциации, должна быть ниже, чем у продуктов оптической диссоциации в непрерывной области поглощения. Кривые потенциальной энергии Зг, представленные сплошной линией на рис. 3.3, показывают, что в результате предиссоциации образуются два атома в основном состоянии, 5( Р), тогда как в случае оптической диссоциации — один атом в возбужденном состоянии, 5 ( /)). Важно отметить, что в более длинноволновой по сравнению с порогом диссоциации области спектра предиссоциация может приводить к продуктам, отличным от продуктов оптической диссоциации. [c.53]

    Существуют два основных препятствия при описании фотохимии больших молекул с той же точностью физических формулировок, что и для простых. Во-первых, структура спектров поглощения сложных частиц становится уже трудноразрешима, вследствие чего довольно трудно проводить как идентификацию состояния, так и распознавание оптической диссоциации и предиссоциации. Размытость спектральной структуры, естественно, является результатом как усложнения спектра и уплотнения колебательных и вращательных уровней, так и увеличения числа электронных состояний. Рис. 3.4 показывает исчезновение разрешаемой структуры спектра при переходе от формальдегида к ацетальдегиду. Во-вторых, для возбужденной многоатомной молекулы существует несколько путей фрагментации. [c.56]

    В газовых лазерах для получения инверсии заселенности обычно используется электрическое возбуждение. Молекулы и атомы при столкновениях с высокоэнергетическими электронами возбуждаются и ионизируются. При этом, ввиду того что правила оптического отбора здесь неприменимы, можно осуществить заселение запрещенных метастабильных состояний. Действие лазера становится возможным за счет переходов в нижние состояния. Два важных примера — это азотный лазер, который является импульсным, и аргоновый ионный лазер, работающий в основном в непрерывном режиме. Характерные процессы описываются реакциями (5.50) + (5.51) и (5.52) + + (5.53)  [c.144]


    Предположим, что жидкий раствор облучается пучком света постоянной интенсивности. Если оптическая плотность достаточно мала, скорость поглощения света 1а будет постоянной по всему объему. За время, существенно большее времени жизни флуоресценции, устанавливается стационарное состояние, в котором скорость образования синглетных возбужденных молекул уравновешивается скоростью их исчезновения. Если в высших синглетных возбужденных состояниях не происходит ни фотохимических реакций, ни интеркомбинационной конверсии, скорость образования А равна скорости поглощения света и можно записать  [c.142]

    При облучении линейно-поляризованным светом пленки, в которой диспергированы оптически анизотропные флуоресцентные молекулы (М), последние возбуждаются селективно в зависимости от углового расположения молекулярных осей относительно направления электрического вектора возбуждающего света. Испускаемая из пленок флуоресценция обладает поляризованными характеристиками, которые зависят от пространственного распределения молекулярных осей (рис. 35.15) молекул, возбужденных на момент испускания флуоресценции. [c.219]

    Образовавшиеся ионы и возбужденные молекулы вступают в разнообразные реакции [6, 7, 8, 9]. Эти же реакции могут происходить при воздействии квантов оптических частот, в электрическом разряде, при действии медленных электронов в ионном источнике масс-спектрометра, в кавитационных полостях внутри жидкости, создаваемых ультразвуковым полем, при поглощении микроволновой мощности и т.д. [c.158]

    Действие света может инициировать гомолитическую диссоциацию, возбуждение молекул или валентные колебания составляющих ее атомов. В ИК-области появляются в виде полосы средней интенсивности с максимумом при 620 см лишь обертоны валентных колебаний атомов брома в молекуле. В остальной части ИК-области спектра до 3800 см , обычно используемой в анализе, бром после очистки по методу [690] оптически прозрачен [917], что облегчает идентификацию и количественное определение примесей в техническом продукте. Для определения брома важны спектры поглощения в более коротковолновой области. [c.13]

    В начальном периоде развития теории цепных реакций предполагалось, что активными центрами реакции обычно являются молекулы в особом энергетическом состоянии, ианример оптически возбужденные молекулы. Энергетические цепи в настоящее время считаются почти полностью исключенными, по крайней мере, в условиях умеренных температур (ниже 200°), при которых развитие цепной реакции осуществляется в основном через атомы и радикалы, т. е. через материальные цени [12]. Продолжение такой цепи означает сохранение свободной валентности или периодическую регенерацию радикалов в процессе химического взаимодействия [2]. [c.20]

    В последнем случае переход оптически активной возбужденной молекулы в метастабильное состояние представляет собой один из случаев тушения флуоресценции, которое обычно заключается в происходящем при столкновении возбужденной молекулы с какой-либо другой молекулой переходе в иное (оптически неактивное) электронное состояние (см. ниже). В рассматриваемом случае таким состоянием является метастабильное состояние возбужденной молекулы. Отметим, что тушение флуоресценции, переводящее молекулу в метастабильное состояние, очевидно, будет означать дезактивацию возбужденной молеку.лы лишь при условии, что метастабильный уровень лежит значительно ниже первоначально возбужденного уровня. В тех же случаях, когда метастабильный уровень расположен вблизи первоначального уровня, результатом тушения флуоресценции не обязательно должна быть дезактивация молекулы. Наоборот, в этих случаях тушение флуоресценции, переводящее молекулу в метастабильное состояние, благодаря большому значению величины Тф в этом состоянии, приведет к увеличению продо-яжительности жизни молекулы и, следовательно, к увеличению вероятности вступления ее в реакцию. [c.316]

    Спектроскопический метод изучения процессов обмена энергии при столкновениях молекул. С точки зрения экспериментального изучения процессов обмена поступательной и вращательной (а также и колебательной) энергии значительный интерес представляет метод, основанный на изучении спектров испускания молекул при наличии столкновений с посторонними молекулами. При этом особенно удобен оптический метод возбуждения спектров (флуоресценция). Так, при достаточно низких давлениях, когда среднее время между последовательными соударениями молекул значительно превосходит среднюю продолжительность жизни возбуждеиггой молекулы (а также при достаточно низкой температуре), путем оптического возбуждения можио получить молекулы, находящиеся на определенном колебательном V ) и вращательном ] ) уровнях, вследствие чего при отсутствии столкновений в спектре флуоресценции будут наблюдаться лииии, соответствующие переходам, имеющим эти возбужденные уровни (и и ] ) в качестве начального. Примером такого спектра, называемого резонансным, может служить спектр флуоресценции паров иода, представленный на рис. 73 [1320] (верхний спектр). Этот спектр, полученный при возбуждении молекул Ь зеленой линией ртути Я 5460,6 А, представляет собой продольную деландрову серию, отвечающую переходам с первоначально возбуждешюго колебательного уровня у = 26 на уровни основного состояния молекулы о=1, 2, 3, 4, 5,... Каждая полоса в этой серии состоит всего только из двух линий (дублет), отвечающих переходам I = 34 (первоначально возбужденный вращательный уровень)—>7=/ 1 (35 и 33). [c.305]

    Длительность возбужденного состояния молекул. После прекраще ния возбуждения свечение не исчезает мгновенно, а продолжается определенный промежуток времени. Длительность возбужденного состояния т у разных соединений может существенно различаться. Она характерна для каждого вещества и является его важной оптической характеристикой. Так, для растворов обычно т 10 —10- сек. Затухание свечения кристаллофосфоров протекает по сложным законам и может продолжаться секунды, минутьи и даже часы. [c.411]

    Результаты исследования условий возникновения фотоиндуцированных сигналов ЭПР с g=2.0030 и АН=3—А э в агрегированных образцах хлорофилла и хлорофиллида свидетельствуют о том, что эти бесструктурные сигналы появляются только в кристаллических образцах в присутствии акцепторов электрона (кислород, хинон) нри обязательном условии сорбции воды на кристаллах пигментов. В присутствии одних только акцепторов, адсорбированных на поверхности кристаллов пигментов, фотоиндуцированных сигналов ЭПР не возникает. Можно предположить, что при действии света с длиной волны 720 нм на кристаллы хлорофилла и хлорофиллида на поверхности микрокристаллов возникают возбужденные молекулы пигмента. Неспаренные электроны, ответственные за фотоиндуцированный парамагнетизм, появляются в результате переноса электронов между фотовозбужденными молекулами пигментов и адсорбированными молекулами акцепторов электрона (кислород, хинон). Причем для эффективного переноса электрона, кроме оптического возбуждения молекул пигмента, необходима их термическая активация (энергия порядка [c.454]

    Спектроскопия комбинационного рассеяния (КР) — это раздел оптической спектроскопии, изучающий рассеяние монохроматического света, которое сопровождается изменением его частоты. Комбинационное рассеяние было открыто одновременно и независимо советскими физиками Л. И. Мандельштамом и Г. С. Ландсбергом и индийскими физиками В. Раманом и С. Кришнаном. Причина комбинационного рассеяния — неупругое соударение кванта света с молекулой. При этом часть энергии может уйти на возбуждение молекулы, которая перейдет на более высокий уровень. Тогда энергия рассеянного света будет меньше энергии падающего света на величину энергии перехода. В спектре рассеянного света кроме линии падающего света с волновым числом vo появляются линии с волновым числом Vlстоксовы линии). Энергия перехода характеризуется разностью Av,=vo —VI. Если молекула находилась в возбужденном состоянии, то при соударении с квантом света она может отдать ему свою энергию возбуждения и перейти в основное состояние. Тогда энергия рассеянного излучения возрастает и в [c.247]

    Как правило, электронные уровни соответствуют очень большой энергии, т. е. лишь ничтожная доля молекул находится в возбужденном состоянии (влияние второго члена заметно лишь при Т > hvlAk). Только при очень высоких температурах, когда происходит оптическое возбуждение молекул, надо помимо основного электронного уровня учитывать и другие. Однако даже в этом случае можно ограничиться лишь двумя-тремя членами Рэл- [c.511]

    Поэтому при поглощении молекулой ультрафиолетового излучения высокой энергии наблюдаемый спектр поглощения состоит из широких полос, являющихся результатом наложения большого числа узких полос, соответствующих различным переходам между близко расположенными подуровнями. Сложная природа электронных спек-ров многоатомных молекул делает очень трудным их полный анализ даже при использованип приборов высокого разрешения, т. е. высоко монохроматичных потоков излучений. Отсутствие вращательной и вращательно-колебательной структур можно наблюдать в спектрах жидких веществ и растворов, что связано с взаимодействием между соседними молекулами растворенного вещества и влиянием сольватации (большинство химических исследований относится именно к этим условиям). Полярные растворители обусловливают обычно значительно большие изменения в полосах поглощения, чем неполярные. Это объясняется тем, что оптические спектры возникают в результате поглощения или излучения света внешними электронами, наименее прочно связанными с ядром, которые требуют для возбуждения меньше энергии, чем внутренние электроны. [c.8]

    НЫ квантовые выходы образования триплетов производных антрацена, определенных импульсным фотолизом. При большой концентрации тушителя все син-глетно-возбужденные молекулы переходят в триплетное состояние и квантовый выход триплетов изучаемого соединения можно определить из двух измерений оптической плотности триплет-триплетного поглощения [c.292]

    В заключение отметим, что косвенные методы регистрации спектров ЭПР промежуточных короткоживущих частиц были предложены и начали применяться еще до того, как были открыты спин-коррелированные радикальные пары. Можно отметить метод оптической регистрации спектров ЭПР триплетных возбужденных молекул. Предположим, что молекулы оказались в триплетном возбужденном состоянии и происходит фосфоресценция. В ряде ситуаций время жизни по отношению к фосфо-ресцентному высвечиванию разное для разных триплетных подуровней. Если приложить переменное магнитное поле, то при совпадении частоты поля с частотами переходов между триплетными подуровнями молекулы перекачиваются из долгоживущих подуровней в короткоживущие триплетные подуровни. В результате при совпадении частоты переменного магнитного поля с частотами ЭПР переходов в триплетной молекуле фосфоресценция на короткое время загорается, общее время жизни триплетных молекул сокращается. Такой метод ОДЭПР триплетных состояний широко применяется для исследования триплетных экситонов в молекулярных кристаллах. [c.134]

    Однако не может быть передачи и сложения энергии у несуществующих материальных объекгов. Канонические резонансные структуры являются мысленными, а не реальными образами, а сам рюонанс — это только математический способ описания электронной структуры сопряженной молекулы с помощью подходящих валентных схем. Большинство резонансных струкхур, в том числе биполярные ионные структуры, не могут возникнуть даже в условиях оптического возбуждения, когда поглощается энергия в сотни кДж/моль. [c.60]

    В люминесцентных спектралышх приборах детекторами излучения, испускаемого оптически возбужденными атомами и молекулами, чаще всего служат фотоумножители, реже — фотоэлементы и фотодиоды. [c.513]

    Температурная зависимость удельного сопротивления спрессованного поликристалла ДФПГ хорошо подчиняется уравнению Аррениуса с энергией активации проводимости Де = 0,26 эв. Принято считать, что проводимость органических полупроводников связана с подвижностью л-электронов молекул, причем с ростом числа л -электронов энергия активации проводимости уменьшается. Высказано предположение [16], что энергия активации соответствует той энергии, которая необходима для возбуждения электрона с верхней связывающей орбиты на нижнюю разрыхляющую. Такой электрон может переходить от одной молекулы к другой по туннельному механизму с нулевой или близкой к нулю энергией. Точно так же должна двигаться дырка, образовавшаяся на верхней связывающей орбите. В этом случае Де должно быть близким к энергии оптических переходов между этими молекулярными орбитами, а величина проводимости должна быть чувствительной к свету в той области спектра, которая совпадает с частотой оптических переходов. [c.143]


Смотреть страницы где упоминается термин Оптическое возбуждение. Возбуждение молекул оптическое: [c.353]    [c.78]    [c.249]    [c.184]    [c.353]    [c.249]    [c.122]    [c.177]    [c.183]    [c.291]    [c.278]    [c.72]    [c.619]    [c.146]   
Введение в молекулярную спектроскопию (1975) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте