Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотность урацила

    Одни из оснований нуклеиновых кислот обладают выраженными основными свойствами и протонируются в слабокислой среде, но депротонируются лишь в сильнощелочной другие основания, наоборот, являются слабыми кислотами и, образуя анионы в слабоосновной среде, протонируются только в сильнокислой. К первой группе принадлежат цитозин и аденин относящиеся к ним значения р/Са связаны с уравнениями (3) и (4). Ко второй группе относятся тимин и урацил, и их обычные значения р/Са связаны с уравнениями (5) и (6). Гипоксантин, ксантин и гуанин занимают промежуточное положение они протонируются при сравнительно высоких для этих соединений значениях pH согласно уравнению (3) и депротонируются согласно уравнению (5) при довольно низких для этих соединений величинах pH в щелочной области. В соответствии с этим их кислотно-основные свойства описываются двумя величинами рКа, из которых одна связана с первым процессом, а другая — со вторым. [c.178]


Таблица 5.1. Спектральные и кислотно-основные характеристики нуклеозидных производных урацила и их галоидзамещенных Таблица 5.1. Спектральные и <a href="/info/1484484">кислотно-основные характеристики</a> нуклеозидных <a href="/info/469903">производных урацила</a> и их галоидзамещенных
    Ароматичность гетероциклов, правило Хюккеля. Основность и кислотность гетероциклов. Реакционная способность пиррола, пиридина, индола. Таутомерия а-окси- и а-аминопиридина, урацила, тимина, цитозина, аденина, гуанина. Водородные связи при ассоциациях гетероциклов, их окси- и аминопроизводных. Водородные связи в системах аденин — тимин, гуанин — цитозин. Понятие о ДНК и РНК, их биологическая роль. [c.191]

    Так как основания классических рибонуклеозидов — адено-зина, гуанозина, цитидина и уридина — легко образуются при кислотном гидролизе, они уже давно были идентифицированы как аденин, гуанин, цитозин и урацил соответственно [17]. Анало- [c.15]

    В течение многих лет результаты трудоемких и весьма грубых анализов нуклеиновой кислоты, проведенных первыми исследователями, указывали, как полагали, на эквимолекулярные отношения двух пуриновых (аденин и гуанин) и двух пиримидиновых (урацил и цитозин) оснований. Позже применение хроматографии на бумаге [222] и, в меньшей степени, ионообменной техники дало быстрые и относительно точные методы количественного определения компонентов рибонуклеиновых кислот. При гидролизе нуклеиновой кислоты щелочью образуются мононуклеотиды, которые могут быть затем разделены либо как таковые, либо в виде нуклеозидов, после дефосфорилирования. Кислотный гидролиз, напротив, дает пуриновые основания и пиримидиновые мононуклеотиды. Спектрофотометрическое определение подвергнутых разделению компонентов после элюирования их с бумаги (с применением электрофореза [223] или хроматографии) или с ионообменной смолы позволяет получать молярные соотношения оснований. [c.404]

    Удаление шнффова основания можно проводить обработкой п кислых ил> щелочных условиях обычно используют раствор аммиака в метаноле. 2, 3 -0-Дп метиламинометиленовая группа сахарного остатка еще более лабильна и уда ляется при добавлении всего лишь воды. Тем не менее чувствительность шпф фовых оснований к кислотам и щелочам может стать недостатком, если в даль нейших операциях используется кислотная или щелочная обработка. Кроме того тимин и урацил (если они входят в состав олигонуклеотида) могут подвергаться метилированию, например  [c.157]


    Еше один метод определения N-концевой аминокислоты в белках и пептидах был предложен Шоу (1961). В этом методе используется кристаллический а-ацетил-р-этокси-Н-карбэтоксиакриламид II, получаемый присоединением уретана к дикетену с последующей реакцией образовавшегося N-ацетоацетилуретана I с ортомуравьиным эфиром и уксусным ангидридом. Реагент II в слабощелочном водном растворе быстро реагирует с пептидом, при этом образуется соответствующее 5-ацетилурацильное производное III. При последующем кислотном гидролизе получается смесь аминокислот и замещенный урацил IV из концевой аминокислоты. [c.692]

    Отстав препарата выражается суммарной формулой ggH4,N,RO.,<,P4Na4-. представляет собой сложный эфир фос( )орной кислоты с рибозой и пуриновыми основаниями, Пут ем кислотного гид[юлиза нуклеиновой кислоты выделены аденин (а), гуанин (б), цитозин (й), тимин ( ), урацил ( )). имеюш.ие строение  [c.187]

    Влияние pH на конформации полинуклеотидных цепей в растворе обусловлено тем обстоятельством, что водородные связи, стабилизующие спиральную структуру, образуются в этих молекулах между группами, способными к ионизации, и поэтому ионизация хотя бы одной из групп, участвующих в об.разовании водородной связи, означает одновременно разрыв последней, что ведет к изменению конформации молекулы. В этом случае мы встречаемся с ярким примером специфических взаимодействий, о которых говорилось ранее применительно к полипептидам (см. 26, 27). Действительно, ионизация оснований, т. е. процесс отдачи или связывания протона (соответственно для кислотных и основных ионизуемых групп) осуществляется лишь при отсутствии водородных связей в спиральной форме такой процесс не имеет места. Пуриновые и пиримидиновые основания, входящие в ДНК и синтетические полинуклеотиды, образуют водородные связи между аминогруппой и атомом азота, включенным в цикл, с одной стороны, и группой —МН—СО — с другой. Отрицательные логарифмы констант диссоциации этих групп соответственно равны —2,9 (гуанин) 3,7—3,8 (аденин) 4,5—4,8 (цитозин) р/Скн-со 9,5—11,4 (гуанин, тимин, урацил). Поскольку аминогруппа присоединяет протон, а группа —NH—СО— отдает его, то первая заряжена при pH < рКш2 а вторая при pH > рКш-со- Таким образом, в диапазоне рК 2 < рН < / АГын-со пуриновые и пиримидиновые основания не заряжены, и здесь возможно существование спиральной конформации молекул. Интересный [c.372]

    Это соединение было объектом обширных исследований, проведенных Левиным и обобщенных в 1934 г. Левин предложил общую структуру этой сложной молекулы. Позднее Тодд н другие исследователи выяснили детали строения. тpyкfypa, предложенная для четырехзвеньевого участка цепи, предполагает одну из возможных последовательностей. Основу цепи составляют рибозные остатки, связанные фосфатными группами З -кислородный атом одного остатка с 5 -кислород-ным атомом другого Т -р-гликозидной связью присоединены либо пурины—аденин и гуанин, либо пиримидины—урацил и цитозин. Возможные таутомерные формы азотистых оснований приведены в следующем разделе, где описаны свойства и строение дезоксирибонуклеиновой кислоты. Так как 5 -гидроксильная группа — первичная, а З -гидроксильная группа — вторичная, то кислотный гидролиз РНК приводит к расщеплению в первую очередь 5 -эфирной связи с образованием четырех глико-зидов рибозид-З -фосфата, известных как нуклеотиды. Нуклеотид, содержащий аденин, называется адениловой кислотой. Щелочной гидролиз в жестких условиях приводит к отщеплению З -фосфатной группы и дает нуклеозид аденозин, точнее 9-р-Л-рибофуранозиладенин. [c.718]

    Кислотный гидролиз дезоксирибонуклеозид-3, 5 -циклофосфа-тов и пуриновых рибонуклеозид-3, 5 -циклофосфатов приводит к выделению оснований (см. стр. 495), сопровождающему разрыв фосфодиэфирных связей . Так, при нагревании аденозин-3, 5 -циклофосфата с сульфокатионитом в Н+-форме образуется смесь рибозо-2 -, -3 - и -З -фосфатовв более жестких условиях — при нагревании с 1 и. соляной кислотой при 100° —продуктами реакции являются аденин, рибоза и ортофосфорная кислота При аналогичной обработке (1 н. НС1, 100 °С) уридин-3, 5 -циклофос-фат полностью расщепляется за 1 ч (время полупревращения 8 мин) при этом образуются урацил (67%), уридин-2 (3 )-фосфат (27%) и уридин-5 -фосфат (6%). Цитидин-3, 5 -циклофосфат разрушается полностью за 2 ч (время полупревращения 26 мин) при этом возникают цитозин (6%), цитидин-2 (3 )-фосфат (78%) и ци-тидин-5 -фосфат (13%) [c.552]

    У. к. обладают рядом свойств, характерных для уридина (галогенирование, восстановление пиримидинового кольца и др.). При кислотном гидролизе происходит разрыв пирофосфатиой связи в УДФ и УТФ (15 мин. 100°, 1 н. к-та) отщепление фосфата от УМФ затруднено. При жестком кислотном гидролизе происходит разрыв К-гликозидной связи с освобождением урацила и фосфата и разрушением рибозы. Рибоза выделяется кислотным гидролизом после ослабления К-гликозидной связи восстановлением или бромированием пиримидинового кольца. [c.182]

    Химич. свойства Ц. к. определяются свойствами цитозина, пентозы II прочностью связп фосфорной к-ты. В щелочных условиях Ц. к. дезаминируется до производных урацила. При кислотном гидролизе легко расщепляется ппрофосфорная связь (15 мин., 1 н. к-та, 100°). Фосфорная к-та прочно связана с пенто-зой при ее гидролитич. отщеплении происходит разрушение пентозы. Цветные реакции на пентозу и выделение пентозы для хроматографирования ироводят после бромировання или восстановления Ц. к. [c.440]


    Устойчивость гликозидной связи в кислой среде широко варьирует в зависимости от природы как основания (и его заместителей), так и сахара (и его заместителей). Так, напрпмер, дезоксинуклеозиды менее устойчивы, чем рибонуклеозиды, тогда как в пределах каждого класса устойчивость изменяется в следующем порядке урацил-(или тимин-) > цитозин- > аденин- > гуаниннуклеозид. На скорость кислотного расщепления гликозидной связи может оказывать значительное влияние наличие ацильного остатка в гетероцикле 100, 101], хотя имеется и другая точка зрения [102]. Этерификация гидроксильных групп сахара также влияет на устойчивость гликозидной связи, как, например, в случае 0-ацетил-2 -дезоксигуанозина [79], фосфатов тимидина [103] и 2 -0-/1-толуолсульфониладенозина [78] ]4а это указывает также удивительная устойчивость 2, 3, 5 -трн- [c.37]

    Предполагают, что положительно заряженные группы диаминокислот белка реагируют с отрицательно заряженными группами фосфорной кислоты нуклеиновых кислот и что таким образом возникает негативный отпечаток нуклеиновой кислоты, которая выполняет в данном случае функцию шаблона [140, 146]. Однако, по мнению автора, высокая кислотность нуклеиновых кислот вряд ли может служить доказательством того, что именно они играют роль специфического шаблона, так как их кислотность настолько велика, что они неспецифически реагируют со многими белками. Кроме того, необходимо принять во внимание, что нуклеиновые кислоты состоят только из семи или восьми различных составных частей аденина, гуанина, цитозина, урацила, тимина, фосфорной кислоты и рибозы или дезоксирибозы. Трудно поэтому представить себе, что нуклеиновая кислота как шаблон может определить столь небольшие различия между белками, как те, которые наблюдаются, например, между сывороточными альбуминами человека и быка, лишь незначительно отличающимися друг от друга по своему аминокислотному составу [147]. Далее, мы до сих пор не знаем, обладают ли нуклеиновые кислоты видовой специфичностью. Если они не обладают этим свойством, то они вообще не могут образовывать специфических шаблонов. Однако если даже допустить видовую специфичность нуклеиновых кислот, то очень трудно представить себе, каким образом могут они определять специфичное положение различных аминокислот в образующейся пептидной цепи, поскольку фосфорная кислота нуклеиновых кислот должна реагировать главным образом с щелочными аминокислотами белка. [c.405]

    Для определения активности (опыты с мезокотилями) аликвот фракции РНК наносили на чашечку из алюминиевой фольги и высушивали под зеркальной лампой. Объединенные спиртовые и кислотные экстракты нейтрализовали и использовали для определения активности фракции свободных оснований и нуклеотидов. Подсчет активности препаратов проводили при помощи торцевого счетчика Т-25-БФЛ с толщиной слюдяного окошка 2—5 мг1см на установке Б. Особенность опытов с отрезками колеоптилей и мечеными основаниями состояла в том, что нуклеиновые кислоты экстрагировались без разделения на РНК и ДНК при помощи 5%-ной хлорной кислоты в течение 15 мин. при 90°. Включение урацила-2-С в РНК и тимина 2-С в ДНК определяли по подсчету активности препаратов, полученных путем нанесения части нейтрализованного кислотного экстракта нуклеиновых кислот на чашечки и высушивания их под лампой. Точность индивидуального счета составляла 10%. Необходимо отметить, что в предварительных опытах с мечеными основаниями промывка радиоактивного материала 5%-ной хлорной кислотой, содержащей смесь уридиловой кислоты (0,2 мг/мл) и ура-цила-С (0,07 лг/л1л), не выявила каких-либо существенных различий в активности препаратов РНК, поэтому в последующих опытах мы не применяли этого приема. [c.161]

    Полинуклеотиды, т. е. рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), представляют собой макромолекулярные цепи, в которых, в соответствии с анализом, на 1 моль гетероцикла приходится 1 моль сахара и 1 остаток фосфорной кислоты. По кривой титрования ясно, что при каждом атоме фосфора имеется 1 гидроксил, т. е. что полинуклеотиды представляют собой двузамещенные эфиры фосфорной кислоты, сохранившей одну кислотную функцию. Все это позволяет полностью установить тип первичной структуры РНК и ДНК. Однако конкретная первичная структура каждой индивидуальной РНК и ДНК определяется еще чередованием четырех гетероциклов — двух пуриновых (аденин и гуанин) и двух пиримидиновых (урацил и цитозин — для РНК тимин и цитозин — для ДНК). Методы установления этого чередования только разрабатываются. Метод, предложенный Корана, состоит в подборе специфических ферментов, один из которых (из змеиного яда) расщепляет цепь по связи фосфорной кислоты с первичным гидроксилом (С, ), а другой (из селезенки) — по связи фосфорной кислоты с вторичной гидроксильной группой (Сз>)  [c.717]

    Для разделения пуриновых и пиримидиновых оснований, нуклеозидов и нуклеотидов используются различные хроматографические методы. В случае нуклеотидов используется также электрофорез. Эти методы пригодны и для разделения производных рибозы и дезоксирибозы. Разделение нуклеотидов зависит от присутствия в пуринах и пиримидинах способных к ионизации групп, а именно енольных гидроксидных групп урацила, тимина н гуанина с рК в интервале от 9 до 12,5 и амииогрупп аденина, гуаиина и цитозина с рК между 2 и 4,5. Кроме того, все нуклеотиды обладают двумя кислотными группами замещенной фосфорной кислоты с р 1 1 и рК 6. [c.214]


Смотреть страницы где упоминается термин Кислотность урацила: [c.734]    [c.244]    [c.100]    [c.599]    [c.610]    [c.228]    [c.233]    [c.228]    [c.233]    [c.154]    [c.154]    [c.494]    [c.181]    [c.182]    [c.22]    [c.78]    [c.96]    [c.474]    [c.678]   
Органическая химия (1990) -- [ c.708 ]




ПОИСК





Смотрите так же термины и статьи:

Урацил



© 2025 chem21.info Реклама на сайте