Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиррол реакционная-способность

    Пятичлеиные ароматические гетероциклические соединения, такие, как. фуран, тпофен п пиррол, галогепнруются, нитруются и сульфируются совершенно так же, как и другие ароматические соединения. Они, как правило, гораздо реакционноспособнее бензола и сходны по своей реакционной способности с фенолом и анилином (гл. 22 и 23) поэтому для электрофильного замещения в ряду гетероциклических соединений часто не требуются сильные катализаторы, как для замещения в бензоле. Так как и пиррол, и фуран разлагаются в присутствии протонных кислот, для них необходимы несколько-иные условия проведения обычных реакций. В реакции сульфирования в этих случаях источником 30,, вместо дымящей серной кислоты служит комплекс, образуем .1Й пиридином и 80 в качестве нитрующего агента можпо применить ацетилнитрат. [c.633]


    Сравните на примере галогенировання (например, иодирования) реакционную способность ядра пиррола, тиофена, бензола и пиридина. [c.181]

    Высокая реакционная способность пиррола имеет иные причины. У пиррола наибольший дипольный момент, причем положительный заряд в нем находится даже не на гетероатоме, а на связанном с ним атоме водорода, который приобретает протонную подвижность. В этом отношении он похож на атом водорода в молекулах фталимида и сукцинимида. Сказанное можно подтвердить тем, что пиррол реагирует с металлическим калием и даже с безводным гидроксидом калия с образованием соединения (54). В этом соединении избыточная электронная плотность еще в большей степени сосредоточена в гетероциклическом кольце, что увеличивает его способность к реакциям электрофильного замещения. [c.353]

    Имидазол наиболее реакционноспособен из всех трех 1,3-азолов, так же как пиррол превосходит по реакционной способности фуран или тиофен. С другой стороны, обладая наиболее высокой основностью, он, по всей вероятности, реагирует в форме соли. [c.327]

    Пиррол — более реакционноспособное соединение, чем бензол, что обусловлено вкладом относительно устойчивой структуры III, В структуре III каждый атом имеет октет элект.ронов положительный заряд рассредоточивается вследствие обобществления всех четырех пар электронов. Не случайно, что пиррол по реакционной способности напоминает анилин высокая активность обоих этих веществ определяется способностью атома азота обобществлять четыре пары электронов. [c.1021]

    Распределение я-электронной плотности в молекуле пиррола также неравномерно. Эта плотность выше в а (а )-положении. Поэтому при реакции электрофильного замещения, которая у пиррола протекает значительно легче, чем у бензола, реагенты становятся в эти положения. По реакционной способности пиррол находится между фураном и тиофеном  [c.362]

    Есть основания утверждать, что, поскольку гетероатом является донором двух р-электронов, положительный конец диполя находится на нем, а диеновая часть молекулы обогащается электронами. Это является одной из причин большей реакционной способности (по сравнению с бензолом) фурана, пиррола и тиофена в реакциях электрофильного замещения. Кроме того, так как у всех пятичленных ароматических гетероциклов энергия сопряжения меньше, чем у бензола, образование ими а-комплексов с электрофильными реагентами происходит легче. [c.510]

    Для тиофена реакции электрофильного замещения протекают во много раз быстрее, чем для бензола, но медленнее, чем у пиррола и фурана. Высокая реакционная способность тиофена также связана с неравномерным распределением л-электронной плотности в кольце, которая, как и у фурана, повышена в а- и а -положе-ниях. [c.360]


    В противоположность пирролу реакционная способность пиридина приближает его к кетонам и азометинам, у которых углеродный атом функциональной группы связан двойной связью с атомом кислорода или азота. [c.244]

    Рассмотрение грубо установленных экспериментальных аналогий приводит к заключению, что реакционная способность пиррола наиболее близка к таковой у резорцина и что в замещенных пирролах реакционная способность может повышаться или понижаться в большей мере, чем у замещенных резорцинов, принимая во внимание отличия в электронном строении обеих систем. [c.235]

    Общая характеристика реакционной способности пирролов, тиофенов и фуранов [c.305]

    В ЭТОМ заключается сходство пиррола с ариламинами, которые реагируют с электрофилами чрезвычайно легко. По реакционной способности к электрофильным агентам пиррол близок анилину и намного превосходит бензол, а в смысле устойчивости в реакциях нуклеофильного присоединения или замещения мало отличается и от бензола, и от анилина. [c.244]

    Ароматичность гетероциклов, правило Хюккеля. Основность и кислотность гетероциклов. Реакционная способность пиррола, пиридина, индола. Таутомерия а-окси- и а-аминониридина, урацила, тимина, цитозина, аденина, гуанина. Водородные связи при ассоциациях гетероциклов, их окси- и аминопроизводных. Водородные связи в системах аденин — тимин, гуанин — цитозин. Понятие о ДНК и РНК, их биологическая роль, Гербициды. [c.251]

    Для пиррола, фурана и тиофена а-положение является более реакционноспособным, чем -положение. Величины + показывают, что по позиционной селективности эти гетероциклы можно расположить в ряд фуран > тиофен > пиррол. Следует отметить, что рассчитанные величины не могут в полной мер< служить основанием для вывода об относительной реакционной способности данных гетероциклов согласно экспериментальным [c.245]

    ОБЩАЯ ХАРАКТЕРИСТИКА РЕАКЦИОННОЙ СПОСОБНОСТИ ПИРРОЛОВ, ТИОФЕНОВ И ФУРАНОВ [c.304]

    В некоторых ИЗ приведенных примеров применяются несколько модифицированные электрофильные реагенты. Высокая реакционная способность этих гетероциклов во многих случаях обусловливает использование более мягких реагентов, например слабой кислоты Льюиса, хлорида олова(1У), в реакции ацилирования тиофена по Фриделю — Крафтсу. Чувствительность фурана и пиррола к протонным кислотам (происходит раскрытие кольца фурана, а пиррол полимеризуется) вынуждает использовать модифицированный сульфирующий агент. [c.1020]

    Положительным концом диполя являются гетероатомы, передающие для образования ароматической системы по одной паре р-электронов, а отрицательным — углеводородная часть гетероцикла. Поэтому ароматическое кольцо в этих соедине ниях имеет большую электронную плотность, чем бензол. По реакционной способности к бензолу наиболее близок тиофен в этом отношении его можно сравнивать с нафталином и ант раценом. По реакционной способности пиррол и фуран превос ходят даже фенол и анилин. [c.352]

    В этой главе рассмотрены общие принципы реакционной способности пятичленных гетероциклических соединений — пирролов, тиофенов и фуранов, а также приведен сравнительный анализ реакционной способности представителей этого класса гетероциклических соединений. [c.304]

    Общая характеристика реакционной способности пиррола, фурана и тиофена [c.304]

    Электрофильное замещение в пирроле, фуране и тиофене. Реакционная способность и ориентация [c.1019]

    В гетероциклических системах различные положения тоже неэквивалентны и к ним применимы такие же правила ориентации, как и к другим циклическим системам. Замещение в фу-ране, тиофене и пирроле направляется главным образом в положение 2 и идет быстрее, чем в бензоле [64]. Пиррол особенно активен, его реакционная способность приближается к реакционной способности анилина и фенолят-иона. В случае пиридина [65] атака происходит не на само свободное основание, а на его сопряженную кислоту — ион пиридиния [66]. Положение 3 обладает наивысшей реакционной способностью, но общая активность пиридина значительно ниже, чем бензола, и аналогична нитробензолу. Однако в положение 4 пиридина можно вводить группы косвенным путем, проводя реакцию с соответствующим Н-оксидом пиридина [67]. [c.324]

    С увеличением бенззамещения пиррола и пиридина реакционная способность этих соединений все больше приближается к реакционной способности полициклических аренов, хотя отмеченные выше характерные особенности азоаренового цикла п несколько трансформированном виде остаются. [c.115]

    Вторая гидроксильная группа в орто- или жега-положениН делает фенол таким реакционноспособным, что карбокснлирование возможно уже в водном растворе щелочей. Напротив, л<ега-амино-группа или лара-оксигруппа вызывает лишь незначительное повышение реакционной способности кольца. Карбоксилнрование может быть осуществлено с гетероциклическими соединениями пиррол (аналогично фенолу) дает пиррол-2-карбоновую кислоту, кар-базол превращается в карбазол-1-карбоновую кислоту. [c.436]

    Пиррол и его производные с[И)собпь1 к ряду интересных и отчасти весьма ссоеобразныл явлений, которые у аналогично построенных соединений (фурана и тиофе ш) наблюдаются редко. По и сам пиррол отличается с пек пто/)Ых отноше[шпх от сыоих производных, часто весьма заметно, особом редакционной инертностью, а пместе с тем, в некоторых случаях, повышенной реакционной способностью, всегда зависящ нми ог определенней реакционной среды. [c.23]


    Конденсация с иминами и иммониевыми ионами. Имино- и иммониевые группы являются азотистыми аналогами карбонильных и 0-протонированных карбонильных групп и обладают аналогичной,реакционной способностью. Одна из простейших реакций пиррола с 1-пирролином, по-видимому, заключается в электрофильной атаке нейтральной группой С = Ы наиболее вероятно, что она осуществляется путем циклизации комплекса, содержащего водородную связь, так как Ы-метилпиррол не реагирует с 1-пирролином в тех же условиях. [c.225]

    Для 1,2- и 1,3-азолов характерны свойства как пятичленных электроноизбыточных гетероциклических соединений, так и гетероциклических соединений, содержащих иминный атом азота. Присутствие иминного фрагмента в азолах понижает их активность в реакциях электрофильного замещения по атому углерода как в результате индуктивного, так и мезомерного влияния. Кроме того, присутствие основного атома азота способствует образованию солей азолов в кислых средах. Например, в зависимости от кислотности среды нитрование пиразола может проходить либо через предварительное образование пиразолиевого катиона [30], либо с участием свободного основания [31]. Изучение протонного обмена, катализируемого кислотой, обнаружило следующий порядок реакционной способности пиразол > изоксазол > изотиазол. Среди пятичленных гетероциклических соединений с одним гетероатомом порядок активности в реакциях протонного обмена следующий пиррол > фуран > тиофен, причем каждое из этих соединений более активно в таких превращениях, чем гетероциклические соединения, содержащие иминный атом азота. При этом азолы более активны в реакциях протонного обмена, чем бензол, парциальные факторы скоростей для реакций по положению 4 пиразола, изоксазола и изотиазола равны 6,3 10 , 2,0 10 и 4,0 10 соответственно. Нитрование тиофена проходит в 3 10 раз быстрее, чем нитрование 4-метилтиазола [32]. Относительная активность тиофенового и тиа-зольного циклов в реакциях нитрования иллюстрируется приведенной ниже реакцией [33]  [c.39]

    Значительное увеличение реакционной способности в результате введения нитрогруппы не распространяется на нитрогалоген-производные фурана и пиррола это, по-видимому, можно объяснить участием серы в делокализации отрицательного заряда в промежуточном соединении (8) путем расширения ее электронной оболочки до десяти электронов. [c.257]

    По реакционной способности к электрофилам кольцевые Сз-атомы и С2-атомы пиррола мало отличаются друг от друга, что особенно наглядно проявляется на примере реакции формилирова-ния по Вильсмейеру. [c.286]

    Предпринятое в последнее время изучение кинетики замещения по а- и р-положениям фурана и бензофурана, а также тиофена и бензотиофена показало, что влияние бензольного колыца проявляется в общем понижении реакционной способности гетероцикла. Особенно интересно то, что в бензофуране и бензотиофене реакционная способность Сг-атома снижена более или менее одинаково по сравнению с Сг-атомами фурана и тиофена, но в то же время реакционная способность Сз-атома как в бензофуране, так и в бензотиофене повышена по сравнению с р-углеродньгм атомом фурана и тиофена. Следовательно, способность бензотиофена реагировать преимущественно по третьему, а бензофурана по второму положениям отражает тот факт, что тиофен замещается по Сз-атому легче, чем фуран. Эти соотношения могут быть экстраполированы на пиррол и индол пиррол способен в небольшой степени замещаться по р-углеродному атому (например, нитрование идет по этому положению на 20%), тогда как индол замещается почти исключительно по положению 3. [c.324]

    Электрофильное замещение 1,3-азолов идет преимущественно по положению 5, которое по реакционной способности аналогично р-положению пиридина и а-положениям пиррола, фурана и тиофена. Сб-Углеродный атом в 1,3-азолах — единственное положение в молекуле, соответствующее и р-положению пиридина, и а-положе-ниям пиррола, фурана и тиофена, тогда как 2- и С атомы соответствуют дезактивированному а-положению пиридина (С4- и Сб-атомы отличаются между собой только в Ы-алкилимидазолах, см. стр. 331). [c.327]

    Рассмотрение 2-нитро-1,3-дикарбонильных соединений в настоящем обзоре обусловлено в первую очередь их структурой. Наличие двух карбонильных групп в молекулах этих соединений позволяет ожидать от них высокой реакционной способности по отношению к ряду реагентов с последующим образованием гетероциклов, содержащих нитрогруппу. Многие нитрозамещеиные пирролы, пиразолы, изоксазолы, пиримидины, хинолины получены на основе нитромало-нового диальдегида 1 (см. обзоры [12, 13]). Например, пиразолы 2 были получены реакцией альдегида 1 с гидразином в воде (схема 1). [c.405]

    Строение карбонилсодержащих пятичленных Ы-содержащих гетероциклов предполагает высокую подвижность атомов водорода в положении С-3 гетерокольца. Это обусловлено активирующим влиянием карбонильной группы, зависящим от природы, связанного с ней гетероатома. Реакционная способность метиленового звена пиррол-2-онов изучена на примере различных реакций конденсации - Кневенагеля, Михаэля, Вильсмаейра-Хаака, реакции азосочетания с солями арилдиазония. [c.19]

    Реакционная способность метиленовой группы пиррол-2-онов изучена также на примере взаимодействия 5-(3,4-дихлорфенил)-ЗН-пиррол-2-она с ацетофеноном, флуореноном, изатином. Реакция проводилась при длительном (10 часов) нагревании реагентов в растворе ксилола или уксусного ангидрида, с образованием 5-арил-3-арилиден-ЗН-пиррол-2-оны [184]. [c.21]

    Свободная пара электронов азота, которая обусловливает основные свойства азотсодержащих соединений, в данном случае вовлечена в зх-облако, и поэтому она не способна к обобществлению с протоном кислоты. Поэтому в противоположность многим аминам пиррол — очень слабое основание (7(б 2,5-10 ). По той же причине для пиррола характерна высокая электронная плотность в кольце, обусловливающая высокую реакционную способность пиррола в реакциях электрофильного замещения он вступает в реакции типа нитрозирования и сочетания с сол51МИ диазония, которые характерны только для наиболее реакционноспособных производных бензола, фенолов и аминов. [c.1017]

    Энергию активации я-электронов можно рассчитать, исходя из предположения о полном отсутствии взаимодействия между бутадиеновой и пиррольной л-системами. Оба приведенных значения А я намного меньше, чем у пиррола, что указывает на значительное увеличение реакционной способности изоиндола. Поразительно, что расчетная энергия активации по направлению А меньше той, которая необходима для атаки по изолированному бутадиеновому фрагменту (направление Б). Энергию активации в реакциях Дильса — Альдера на примере о-хиноидных гетероциклов можно рассматривать как вклады эндотермического эффекта, обусловленного разрушением л-системы пятичленного гетероциклического кольца, и экзотермического — вследствие образования бензольного кольца при циклоприсоединении. Соотношение этих составляющих определяется высотой барьера активации. Следовательно, большая резонансная стабилизация родоначального пятичленного гетероцикла вызывает соответственно уменьшение реакционной способности о-хиноидного бицикла. Так, согласно данным табл. 1.16, изобензофуран, являющийся производным от слабоароматического фурана, намного бол реакционноспособен, чем изотионафтен или изоиндол, которые служат производными от более ароматических моноциклов соответственно. [c.67]

    Прежде, чем обсуждать строение пиррола, вспомним строение циклопента-диенил-аниона, который представляет собой бя-электронную ароматическую систему, образующуюся при депротонировании циклопентадиена. Эта система служит прекрасной иллюстрацией различия между ароматической стабилизацией и реакционной способностью. Циклопентадиенил-анион — очень реакционноспособный, полностью отрицательно заряженный и, тем не менее, резонансно стабилизированный . Значение рА циклопентадиена равно -14, т. е. кислотность этого соединения значительно выше, чем кислотность простых диенов, что обусловлено исключительно тем, что образующийся анион резонансно стабилизирован. Пять одинаковых канонических структур 28—32 демонстрируют, что все атомы углерода эквивалентны и несут 1/5 отрицательного заряда [c.20]

    Реакции электрофильного ароматического замещения гораздо чаще использую-ся в случае пятичленных электроноизбыточных ароматических соединений [12]. Такие соединения, как пиррол, тиофен и фуран, с чрезвычайной легкостью вступают в реакции электрофильного замещения, причем замещение проходит по любому положению цикла, однако предпочтительнее по положению, ближайшему к гетероатому, т. е. по а-положениям. Такие реакции облегчаются электронодонорными свойствами гетероатома, поэтому пиррол более реакционноспособен, чем фуран, который в свою очередь более реакционноспособен, чем тиофен. Количественное сравнение [13] реакционной способности этих гетероциклических соединений зависит от электрофильного реагента например, соотношение скоростей трифторацетилирования пиррола, тиофена и фурана равно, 5 10 1,5 10 1 [14], формилирование фурана проходит в 12 раз быстрее, чем тиофена [15], а ацилирование — в 9,3 раза [16]. Парциальные факторы скоростей протонного обмена по положениям аир 1-метилпиррола [17] равны соответственно 3,9 10 и 2,0-10 °, в случае фурана — 1,6 10 и 3,2 10 , в случае тиофена — 3,9 10 и 1,0-105 [18]. Соотношение скорости замещения по а- и р-положениям тиофена существенно различаются (от 100 1 до 1000 1) в зависимости от электрофильного агента [19]. Относительная реакционная спо- [c.37]

    Индолы лищь немногим менее активны в реакциях электрофильного замещения по сравнению с пирролами, и такие реакции проходят по р-положению гетероциклического фрагмента. Скорости ацетилирования в условиях реакции Вильсмейера (N,N-димeтилaцeтaмнa — фосген) индола и пиррола соотносятся как 1 3 [24]. В противоположность пирролу, для индола наблюдается очень высокая региоселективность при реакциях электрофильного замещения так, при ацетилировании в условиях реакции Вильсмейера соотношение скоростей атаки по р- и а-положениям равно 2600 1. Индол вступает в реакции с электрофилами по р-положению в 5-10 раз быстрее, чем бензол [25]. Иллюстрацией различия в реакционной способности индола и фурана может служить приведенная ниже [26] реакция формилирования. [c.38]

    Из пятичленных гетероциклических соединений (пиррол, фуран, тиофен) пиррол наиболее подвержен реакциям с элекгрофилами, что связано с большей электронодонорной способностью нейтрального трехвалентного атома азота, а также с большей стабильностью положительно заряженного четырехвалентного атома азота. Этот факт находит простое подтверждение при сравнении относительной основности насыщенных аминов, сульфидов и эфиров. Ряд основности прекрасно иллюстрирует относительную реакционную способность пиррола, фурана и тиофена по отношению к атаке электрофила по атому углерода и спо- [c.305]

    Реакционная способность индола аналогична реакционной способности фенола как и фенол, индол (и пиррол) вступает в реакции со слабыми электрофилами типа катиона фенилдиазония. В зависимости от pH среды индол способен вступать в такие реакции в виде соответствующего аниона, образующегося в результате Ы-депротонирования (разд. 2.5) и присутствующего в небольшой равновесной концентрации. Очевидно, что реакция индолил-аниона с катионом фенилдиазония — еще более быстрый процесс, который проходит в 10 раз быстрее, чем с нейтральной молекулой [27]. Реакция Манниха (электрофил H2=N+Me2) 5- и 6-гвдроксииндолов идет по положению, соседнему с гидроксильной группой, а не по р-положению индола [28]. Сравнение реакционной способности фурана и бензо[й]фурана, с одной стороны, и тиофена и бензо[6]тио-фена, с другой, в реакциях электрофильного замещения показывает, что бицик-лические системы менее активны в таких превращениях, чем моноциклические, хотя степень различия существенно зависит от природы электрофила [29]. [c.38]

    Основу химии пиррола, тиофена и фурана определяет способность этих соединений с легкостью вступать в реакции электрофильного замещения, преимущественно по а-положению. Электрофильное замещение по -положению протекает менее легко и обычно в том случае, если а-положения заняты заместителями. На начальном этапе изучения химии гетероциклических соединений следует особо обратить внимание на существенное различие в реакционной способности пяти- и шестичленных гетероциклических соединений первые реагируют с элекгрофилами легче, чем бензол, тогда как последние гораздо сложнее. [c.304]

    При сравнении реакций с элекгрофилами пиррола и анилина легко обнаружить сходство их реакционных способностей [c.305]


Смотреть страницы где упоминается термин Пиррол реакционная-способность: [c.393]    [c.220]    [c.226]    [c.1024]    [c.644]    [c.119]   
Химия справочное руководство (1975) -- [ c.363 , c.364 ]




ПОИСК





Смотрите так же термины и статьи:

ОБЩАЯ ХАРАКТЕРИСТИКА РЕАКЦИОННОЙ СПОСОБНОСТИ ПИРРОЛОВ, ТИОФЕНОВ И ФУРАНОВ

Пиррол

Пиррол реакционная способность с галогенами



© 2025 chem21.info Реклама на сайте