Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотиды разделение

    РАЗДЕЛЕНИЕ НУКЛЕОЗИДОВ И НУКЛЕОТИДОВ [c.207]

    I. Смесь бутанола, уксусной кислоты и воды (12 3 5). Применяют для разделения смеси оснований, а также пуриновых и пиримидиновых нуклеозидов и нуклеотидов. [c.62]

    В настоящее время существует множество вариантов как метода Максама — Гилберта, так и метода Сэнгера. Главное, эти методы удалось полностью автоматизировать. Так, например, при секвенировании ДНК по Сэнгеру на 5 -конец праймера вводят флуоресцентные метки, причем для каждого из четырех анализируемых нуклеотидов используются флуоресцирующие агенты с различными спектральными характеристиками. После электрофоретического разделения гель сканируется при четырех различных длинах волн и полученная информация сразу обрабатывается на ЭВМ. При этом все биохимические операции также проводятся роботом. [c.19]


    Второй раздел практикума ставит своей целью познакомить студентов с особенностями выделения, фракционирования, идентификации и количественного определения различных природных азотсодержащих < оединений. белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов и пр Предлагаемые экспериментальные работы включают аиболее широко используемые в лабораторной практике современные методы разделения и анализа этих соединений различные виды электрофореза, хроматографии, спектрофотометрии, колориметрии и др. Работа проводится как на готовых коммерческих препаратах высоко- и низкомолекулярных азотсодержащих соединений, так и на препаратах, выделяемых студентами из различных тканей лабораторных животных. [c.79]

    Два пиридиновых нуклеотида, содержащих остаток никотинамида, были в свое время названы коэнзимом I и коэнзимом II. В настоящее время установлена структура этих коферментов. Они получали название дифосфопиридиннуклеотид (ДПН) и трифосфопиридиннуклеотид (ТПН). Сейчас приняты названия никотинамидадениндинуклеотид и ни-котинамидадениндинуклеотидфосфат, НАД и НАДФ соответственно. Первый из них, коэнзим I (НАД), характерен для дрожжевого фермента. Его открыли Гарден и Юнг в 1904 г. в классической работе по спиртовому брожению. Авторы разделили дрожжевой сок диализом на белковую и небелковую фракции и показали, что ни одна из этих фракций в отдельности не влияет на брожение. Способностью ускорять брожение обладает лишь смесь обеих фракций. При диализе связь между белком и простетической группой нарушается, и разделение фермента на два фрагмента диализом идет легко. Столь же легко эта связь восстанавливается при смешении фракций. Структура НАД была окончательно установлена в 1942 г. в работах Эйлера, Каррера, Шленка и Варбурга. Сложное соединение содержит по 1 моль никотинамида и аденина и по 2 моль )-рибозы и фосфорной кислоты, связанных, как показано на приводимой формуле  [c.719]

    РАЗДЕЛЕНИЕ АДЕНИЛОВЫХ НУКЛЕОТИДОВ [c.183]

    Разделение нуклеотидов. Разделение проводится на ДАУЭКС [c.49]

    Разделение. На листе хроматографической бумаги проводят простым карандашом линию старта (на расстоянии 4 см от нижнего края листа), на которую наносят исследуемые растворы (суммарное количество адениловых нуклеотидов — 0,3—0,4 мкмоль). На ту же хроматограмму наносят растворы нуклеотидов- свидетелей по 0,05— [c.184]

    Нанесение образца и разделение нуклеотидов. На расстоянии 1,5- [c.186]

    Комбинированное использование потенциометрического метода и двухволновон спектрофотометрии позволяет с высокой чувствительностью определять количественный состав многокомпонентных смесей без их разделения. Подобный анализ основан на зависимости спектров поглощения индивидуальных компонентов от pH среды и позволяет провести определение концентраций компонентов,, имеющих, например, близкие или даже идентичные спектры поглощения в нейтральной среде при обычных условиях. При этом, например при определении количественного содержания различных нуклеотидов в составе ДНК отпадает необходимость в предварительном хроматографическом разделении этих компонентов. Предварительное хрсшатографичеокое разделение вызвано тем, что спектры поглощения нуклеозидов перекрываются между собой настолько сильно, что обычные спектрофотометрические методы определения концентрации компонентов оказываются неприменимыми. [c.279]


    И. X. примен. для разделения фенолов и карбоновых к-т (на анионитах), аминосахаров, нуклеотидов, нуклеозидов, пуриновых, пиримидиновых и др. оснований (на сульфо-катионитах). Белки, нуклеиновые к-ты и др. высокомолекулярные соед. разделяют с помощью агарозных и декстрановых гелей и производных целлюлозы (напр., диэтиламиноцеллюлозы, карбоксиметилцеллюлозы). Большое значение имеет автоматич. анализ смесей прир. аминокислот на мелкодисперсных грапулиров. сульфока-тионитах. [c.226]

    Основные изменения, внесенные нами, учитывают последние работы в области химии нуклеиновых кислот [2, 3]. Все операции проведены с помощью отечественных ионитов—КУ-1, КУ-2 и АВ-17. Для ускорения процесса выделения и очистки нуклеотидов применена двойная хроматография — предварительное разделение и окончательная очистка. [c.94]

    Разделение проводят в камере для низковольтного электрофореза (с. 89). Кюветы заполняют цитратным буфером. Вырезают полосы хроматографической бумаги шириной 4—5 см и наносят на них тканевой экстракт и стандартные растворы нуклеотидов- свидетелей в количестве, соответствующем 0,1—0,15 мкмоль каждого нуклеотида Разделение проводят в течение 4—5 ч при градиенте напряжения 15— 20 В/см и силе тока 0,5 мА на 1 см поперечного сечения бумажной полосы. Местоположение нуклеотидов идентифицируют в ультрахемископе. [c.184]

    Нуклеотиды. Разделение этих нуклеотидов методом ионообменной хроматографии имеет важное значение, так как соответствующая методика, применяемая для разделения этих веществ при помощи тонкослойной хроматографии, не позволяет разделить инозин-, гуанозин- и ксантозинмонофосфаты. Эти нуклеотиды обычно используют для усиления аромата мясных продуктов. [c.208]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    Полиамидный характер цианокобаламина установлен по выделению 6 мол. аммиака при кислотном гидролизе. При кислотном гидролизе витамина В12 горячим раствором соляной кислоты обнаружен красный аморфный осадок, содержащий кобальт, представляющий собой смесь кислот, содержащих от одной до семи карбоксильных групп, разделенных электрофорезом. То обстоятельство, что отщепление -1-аминопропанола-2 происходит после отщепления нуклеотида (I), а также отсутствие основных групп в красном кобальтосодержащем продукте гидролиза позволило заключить, что аминопропиловый спирт этерифицирован фосфорной кислотой и соединен амидной связью с остальной молекулой. [c.682]

    Жидкостная Л. х. примен. для разделения в-в, способных образовывать комплексы,— аминов, карбоновых к-т, спиртов, серусодержащих соед. и др. Детектором в этом случае служит проточный спектрофотометр. Образование сорбционного комплекса — селективный процесс, поэтому Л. х. особенно эффективна при разделении изомеров, в т. ч. энантиомеров. Напр., на смолах с группами оптически активных и-аминокислот, координиров. с ионами Си +, разделяют энантиомеры аминокислот, оксикислот, аминоспиртов, диаминов. На карбоксильных и иминодиацетатных смолах с ионами Са- + илн NP+ разделяют и анализируют нуклеиновые основания и нуклеотиды. Методом газовой Л. х. на сорбентах, содержащих, напр., соли Ag+, разделяют олефины и аром, соединения. Тонкослойная Л х. примен. для разделения стероидов и липидов. [c.300]

    Здесь уместно заметить, что разделение оснований (н том числе минорных), нуклеозидов, нуклеотидов и их фосфорных эфиров в аналитических целях чаще ведут. мстодо.м ТСХ, чем на попообмеп-ных колонках. [c.321]

    На полоски хроматографической бумаги шириной 4—5 см на линию старта наносят ш,елочной гидро лизат РНК (10—20 мкл) и растворы нуклеотидов- свидетелей по 0,1—0,15 мкмоль каждого. Электрофорез проводят в течение 5 ч при силе тока 0,5 мА на 1 см поперечного сечения бумаги. Для определения времени окончания электрофоретического разделения можно использовать окрашенный маркер, например 1%-ный раствор ксиленцианола, который движется быстрее самого подвижного компонента смеси. Локализацию рибомононуклеотидов проводят в ультрахемископе. Подвижность нуклеотидов от катода к аноду возрастает в ряду цитидиловая, адениловая, гуаниловая и уридиловая кислоты. Для количественного определения участки электрофореграмм, поглощающие в ультрафиолетовой области, очерчивают простым карандашом, вырезают, измельчают и элюируют нуклеотиды 4—5 мл 0,01 н. раствора НС1 в течение 4—5 ч. В элюатах определяют поглощение на спектрофотометре при длине волны, характерной для каждого нуклеотида (см. Приложение, с. 499), рассчитывают количество их в микромолях и в процентах по отношению к сумме всех нуклеотидов в щелочном гидролизате РНК. [c.181]


    Бариевые соли адениловой, гуаниловой, уридиловой и ци-тидиловой кислот являются наиболее удобной формой для выделения, хранения и применения нуклеотидов. Последние находят все больщее применение как для препаративных целей (синтез нуклеозидов, коферментов и т. д.), так и для биохимических исследований и в медицинской практике. Нуклео-зид-2 (3")-фосфаты бария могут быть получены из рибонуклеиновой кислоты щелочным гидролизом с последующим разделением методом ионообменной хроматографии и осаждением в виде бариевых солей. [c.93]

    При последовательном пропускании двух растворителей достигается хорошее разделение рибомононуклеотидов. Rf увеличивается в ряду адениловая, цитидиловая, уридиловая и гуаниловая кислоты. Обнаружение и количественное определение нуклеотидов -проводят так же, как после электрофоретического разделения (с. 181). [c.182]

    Перед разделением пластинки Фиксион переводят в Н+-форму. Для этого их промывают в течение 16 ч 1 н. раствором НС1, а затем бидистиллированной водой. Способ промывки описан на с. 134. На высушенные промытые пластинки на расстоянии 2 см от нижнего края наносят исследуемые растворы и нуклеотиды- свидетели с интервалом [c.185]

    Для разделения нуклеотидов используют слабо- и среднеосновные анионообменники на основе целлюлозы. ДЭАЭ-, Эктеола- и ПЭИ-цел-люлозу. Могут быть использованы как коммерческие пластинки, так л приготовленные в лаборатории. Подготовка сорбента и приготовление пластинок с тонким слоем ПЭИ-целлюлозы описаны на с. 182. В отличие от хроматографии рибомононуклеотидов хорошего разделения компонентов адениловой системы можно добиться, применяя в качестве растворителя 0,5 М раствор хлористого лития [c.185]

    Разделение нуклеотидов. Наносят на колонку опытный раствор, содержащий 10—12 мкмоль нуклеотидов в 1—2 мл 1 н. раствора NH4OH. Колонку промывают водой до нейтральной реакции. Элюцию нуклеотидов осуществляют с помощью ступенчатого градиента. Для этого последовательно пропускают через колонку следующие растворы 0,01 М раствор NH4 I (150—200 мл), 0,003 н. раствор НС1 —для элюции АМФ (около 300 мл). Как только pH элюата достигает 3,0, начинают собирать при помощи коллектора фракции по 3 мл и анализируют их при 260 нм. Элюцию продолжают до тех пор, пока экстинк-ция не снизится до 0,05. Далее пропускают 0,02 М раствор Na l в [c.186]

    И. X. применяется для разделения катионов металлов, напр, смесей лантаноидов и актиноидов, 2г и НГ, Мо и W, КЬ и Та последние разделяют на анионитах в виде анионных хлоридных комплексов в р-рах соляной и плавиковой к-т. Щелочные металлы разделяют на катионитах в водных и водно-орг. средах, щел.-зем. и редкоземельные металлы-на катионитах в присут. комплексонов. Большое значение имеет автоматич. анализ смесей прир. аминокислот на тонкодисперсном сульфокатионите.в цитратном буфере при повыш. т-ре. Аминокислоты детектируют фотометрически после их р-ции с нингидрином или флюориметрически после дериватизации фталевым альдегидом. Высокоэффективная И. X. (колонки, упакованные сорбентом с размером зерен 5-10 мкм, давление для прокачивания элюента до 10 Па) смесей нуклеотидов, нуклеозидов, пуриновых и пиримидиновых оснований и их метаболитов в биол. жидкостях (плазма крови, моча, лимфа и др.) используется для диагностики заболеваний. Белки и нуклеиновые к-ты разделяют с помощью И. X. на гидрофильных высокопроницаемых ионитах на основе целлюлозы, декстранов, синтетич. полимеров, широкопористых силикагелей гидрофильность матрицы ионита уменьшает неспецифич. взаимод. биополимера с сорбентом. В препаративных масштабах И. х. используют для вьщеления индивидуальных РЗЭ, алкалоидов, антибиотиков, ферментов, для переработки продуктов ядерных превращений. [c.264]

    Для создания определенного pH и поддержания на необходимом уровне готовят соответствующий буферный раствор. Если это возможно, то буферный раствор подбирают таким образом, чтобы его функциональная группа была похожа на функциональную группу образца. Так, ацетатный буферный раствор приемлем для анализа карбоновых кислот, фосфатный — для люирования нуклеотидов. Большое значение имеет чистота буферного раствора, так как он не должен детектироваться выбранным детектором, что особенно важно при работе в режиме градиентного элюирования. Чистота буферного раствора зависит от фирм-производителей, и даже разные партии одной фирмы могут различаться по составу. Каждая новая партия буферного раствора тестируется двумя холостыми хроматографическими опытами перед использованием. Второй опыт показывает, существуют ли вещества, отложившиеся в колонке в процессе регенерации или в течение последних стадий предыдущего градиента. Хотя большинство разделений проводят в водных буферных растворах, иногда добавляют органический растворитель (метанол, этанол) в количестве 3-10% для повышения селективности и улучшения растворимости образца. При этом концентрация растворителя не должна быть велика, чтобы не выдать осаждения буферной соли, о чем будет свидетельствовать появление течи в системе и увеличение сопротивления в колонке. [c.38]

    Лигандообменную хроматографию применяют для разделения в водной среде соединений, представляющих большой интерес для органической химии и биохимии аминов, аминокислот, белков, нуклеотидов, пептидов, углеводов. При этом в вчестве комплексообразующих используют ионы меди, цинка, кадмия, никеля, серебра и железа. Ионы ртути и серебра в неполярной среде алифатических углеводородов образуют лабильные комплексы с ненасыщенными и ароматическими углеводородами. Большими достоинствами лигандообменной хроматографии является ее селективность и отсутствие жестких требований к сорбенту, который может быть прочно связан ионами металла или только пропитан солями металла. [c.82]

    По мере разделения перекрученных qeneit исходной молекулы к их основаниям, ставшим теперь доступными, присоединяются комплементарные нуклеозид-5 -трифосфаты, но с противоположных концов двух цепей. При взаимодействии трифосфатов с З -оксигруппами предыдущих нуклеотидов в растущих цепях образуются новые 3, 5 -фосфодиэфирные связи и освобождаются молекулы неорганического фосфата. В результате каждая из двух родительских цепей дает начало двойной спирали с новой цепью, когда та становится достаточно длинной. Раньше принято было считать, что раскручивание исходных цепей может происходить только на концах двойной спирали. Сейчас установлено, что эти цепи расходятся в нескольких местах на протяжении всей спирали, а образовавшиеся в каждом месте полинуклео-тидные фрагменты соединяются в процессе еще одной реакции (она здесь не показана), давая законченные нити очень большой длины. ФФ — неорганический пирофосфат. [c.484]

    Применеиие. Ж х важнейший физ -хим метод исследования в химии, биологии, биохимии, медицине, биотехнологии Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов белков ферментов, вирусов, нуклеотидов, нуклеиновых к-т, углеводов, липидов, гормонов и т д, изучения процессов метаболизма в живых организмах лек препаратов, диагностики в медицине, анализа продуктов хим и нефтехим синтеза попупродуктов, красителей, топлив, смазок, нефтей, сточных вод, изучения изотерм сорбции из р-ра, кинетики и селективности хим [c.153]

    Хроматографическое разделение нуклеотидов. Раствор нуклеотидов, полученных в предыдущей стадии, подщелачивают аммиаком до pH 9,0 и пропускают через хроматографическую колонку (40X400 мм), содержащую 320—350 мл анионита АВ-17 в С -форме (см. примечание 6). Скорость пропускания раствора 1 млЬнин с 1 кв. см. сечения колонки. [c.95]


Смотреть страницы где упоминается термин Нуклеотиды разделение: [c.321]    [c.178]    [c.280]    [c.100]    [c.209]    [c.209]    [c.210]    [c.368]    [c.492]    [c.508]    [c.184]    [c.304]    [c.169]    [c.166]   
Биохимия Том 3 (1980) -- [ c.165 ]

Лабораторное руководство по хроматографическим и смежным методам Часть 2 (1982) -- [ c.0 ]

Методы практической биохимии (1978) -- [ c.122 , c.136 , c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеотиды



© 2024 chem21.info Реклама на сайте