Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гетероциклы, ароматичность

    Приведите реакции, иллюстрирующие ароматичность пятичленных гетероциклов. [c.136]

    Ароматичность гетероциклов, правило Хюккеля. Основность и кислотность гетероциклов. Реакционная способность пиррола, пиридина, индола. Таутомерия а-окси- и а-аминониридина, урацила, тимина, цитозина, аденина, гуанина. Водородные связи при ассоциациях гетероциклов, их окси- и аминопроизводных. Водородные связи в системах аденин — тимин, гуанин — цитозин. Понятие о ДНК и РНК, их биологическая роль, Гербициды. [c.251]


    Гетероциклы. — Гетер(щи1 лические кольца соединений 1а — 1г содержат по 10 я-эле тронов и поэтому могут проявлять некоторую ароматичность, тогда как гетероцикл 1д содержит только 8 я-электронов. [c.522]

    Очень близки к порфиринам по структуре гетероцикла природные соединения коррины (корриноиды). в отличие от порфирина, корриновый цикл имеет на одно метиновое звено меньше, что довольно существенно отражается на его 71-электронной структуре в молекуле отсутствует циклическая делокализация — следовательно, она уже не ароматична. Но корриновый цикл сохраняет способность атомов азота образовывать хелатные комплексы металлов (с с1-элементами), очень сходные с ме-талло-порфиринами, которые также способны переходить из плоско-квадратных [c.265]

    Здесь уместно упомянуть и о симметричных триазинах. Эти прочные и ароматичные по своему характеру гетероциклы настолько чувствительны к нуклеофильным агентам, что они быстро разлагаются даже водой. Нуклеофильное присоединение приводит к образованию высоко симметричного промежуточного продукта, стабилизированного в значительной степени тем, что его отрицательный заряд распределен между тремя атомами азота. [c.143]

    Катрицкий А., Ароматичность и таутомерные равновесия гетероциклов, ХГС  [c.380]

    Насыщение колец разрушает ароматичность структуры и, следовательно, лишает эти соединения ароматических свойств. Эти насыщенные гетероциклы обладают именно теми свойствами, которых можно было ожидать свойствами вторичного алифатического амина, алифатического простого эфира или алифатического сульфида соответственно. Поскольку в пирролидине на атоме азота имеется свободная пара электронов, способная обобществляться с кислотами, то он обладает обычной основностью амина (K 10 ). Гидрирование пиррола увеличивает его основность в 10 раз очевидно, при этом происходит фундаментальное изменение структуры. [c.1022]

    АРОМАТИЧНОСТЬ ИЗОИНДОЛА И ДРУГИХ О-ХИНОИДНЫХ ГЕТЕРОЦИКЛОВ [c.63]

    Химические свойства а- и у-пироновых колец похожи, хотя и зависят от положения карбонильной группы. Поэтому ниже главной темой обсуждения будет сравнение химических свойств двух пироновых систем. Следует также учитывать потенциальную ароматичность гетероцикла. Однако многие реакции, которые следует [c.80]

    В соответствии с этим определением, мезоионные молекулы представляют формулами общего вида (9), в которых а, Ь, с, (3, е II Г — атомы и группы, составленные из подходящим образом замещенных атомов углерода или гетероатомов. Ограничения, накладываемые на атомы или группы а—Г в структуре (9), число возможных мезомерных структур (см. разд. 20.4.2) и связь мезоионных соединений (9) с другими гетероциклическими системами, имеющими тот же ст-скелет (10), обсуждены в обзоре [9]. Отметим в этой связи, что, согласно общепринятой точке зрения, пятичленные гетероциклические УУ-оксиды (и родственные /У-имины и илиды), примерами которых могут служить соединения (11) и (12), удовлетворительно изображаются с помощью единственной диполярной структуры соединения этого типа поэтому не относят к числу мезоионных. Первоначально предлагалось изображать мезоионные соединения структурами типа (13), однако это неопределенное изображение не привилось и предпочтительной является структура типа (9), которая символизирует делокализацию л-электронов по мезоионному циклу в сочетании с частичным положительным зарядом экзоциклическая группа (/) несет соответствующий частичный отрицательный заряд. Эта поляризация мезоионных соединений, при которой цикл стремится к структуре с секстетом электронов, привела к их описанию как ароматических соединений и рассмотрению аналогий со структурой тропона (14). Некоторые мезоионные молекулы действительно обладают свойствами, которые ассоциируются с классическими представлениями об ароматичности, однако из-за разнообразия свойств этой большой группы гетероциклов ныне вряд ли целесообразно описывать их как ароматические. [c.715]


    Подобно у-пирону хромон при обработке сухим НС1 в эфире легко образует гидрохлорид (50) [56]. Интересно, что рКа бенз-аннелированной системы (2,0) существенно выще, чем у у-пирона (0,1) [57]. Атом кислорода карбонильной группы также может метилироваться метил-о-нитробензолсульфонатом с образованием Метоксониевой соли (51) [11]. Как и в случае у-пирона, эти реакции отражают скрытую ароматичность гетероцикла. То же можно сказать и о легкости окисления хроманонов б хромоны при [c.91]

    Упражнение 2.3.58. Приготовьте 80 карточек из плотной бу маги (формата почтовой открытки), напишите на одной стороне каждой карточки формулы, а на другой — названия соответствующих гетероциклических систем и страницы книги, н которых приведены сведения об этих гетероциклах. Расположите карточки в определенном порядке (например, по размеру цикла, по числу и видам гетероатомов, сходству методов синтеза, ароматичности и другим характеристикам). Проведите многостороннее сопоставление рассмотренных гетероциклов. Это упражнение выполните сначала самостоятельно, а затем вместе со всей учебной группой. [c.608]

    Следовательно, ароматичность этих гетероциклов зависит от двух электронов, которые гетероатом предоставляет в я-систему. В случае пиррола атом азота лишается пары электронов, характерной для органических аминов. Поэтому пиррол может образовывать соли только за счет потери ароматического характера и является очень слабым основанием (р/Са 0,4). Замещение пир-рольного цикла приводит к усилению основных свойств, и некоторые замещенные пирролы дают относительно устойчивые хлоргид-раты [2]. Сам пиррол в сильной кислоте протонируется по циклическому атому углерода и полимеризуется в этих условиях, вероятно, путем взаимодействия непротонированной молекулы пиррола с сопряженной кислотой [3]. [c.99]

    Гетероциклы, содержащие гетероатом пиррольного типа, менее ароматичны, чем гетероциклы с пиридиновым гетероатомом. В ряду пятичленных гетероциклов ароматичность изменяется в последовательности селенофен>тиофен>пиррол>фуран. Имеется мало данных по величинам экзальтации диамагнитной восприимчивости азолов. На примере пиразола видно, что введение в пиррольный цикл азагруппы делает молекулу более ароматичной. С другой стороны, в паре тиофен-тиазол величины экзальтации практически одинаковы. Также близки экзальтации для фурана и сиднона, что, в общем, согласуется с низкой оценкой ароматичности этих соединений на основании структурных индексов (см. табл. 1.8). [c.32]

    Ароматический секстет здесь образуется при переходе неподе-ленной пары электронов гетероатома на молекулярную орбиталь соединения. Однако такой переход энергетически менее выгоден, чем в предыдущих случаях, и дает меньшую стабилизацию соединения, так как при этом должен образоваться частичный положительный заряд на гетероатоме и я-электронная избыточность соединения. Поэтому степень ароматичности рассматриваемых соединений зависит от природы гетероатома чем меньше его сродство к электрону, тем она выше. Во всех случаях, однако, в пятичленных гетероциклах имеется сильное нарушени-е выравненностн связей, причем порядок связей 2—3 и-4—5 значительно больше, чем в бензоле. Являясь электроноизбыточными, эти соединения значительно легче бензола вступают в реакции с электрофильными реагентами. [c.25]

    Аллингер установил (1962 , то соединения 1а—1д заметно не различаются по своим УФ-спектрам, и на основании этого и других фактов пришел к заключению, ч о особой ароматичности, ожидаемой для систем с (4п + 2) электронами, эти гетероцИКЛЫ не проявляют. [c.522]

    Средние молекулы соединений хроматографических фракций Сх концентратов АК-5 являются многофрагментными, в их состав входит 1,0—1,4 ареновых и 1,6—2,0 нафтеновых цикла, 34—59% ароматических фрагментов содержат азотистые гетероциклы, вероятнее всего, амидные. Средние молекулы этих фракций имеют меньшую ароматичность. С увеличением глубины содержание ареновых циклов в средней молекуле увеличивается за счет уменьшения средней длины алифатической цепи с 12 атомов углерода до 6. [c.55]

    Сам фуран, так же как и другие пятичленные гетероциклы, дает отчетливую тонкую (бензольную) структуру в области 250 тр,, причем интенсивность длинноволновых полос, сравнительно с ациклическими диенами, очень невелика. Это, по мнению Гиллема и Штерн (200), отражает ароматичность указанных гетероциклов. [c.25]

    Алкил- или ариллитиевые соединения быстро и с высокими выходами присоединяются к азотсодержащим ароматическим гетероциклам в тех случаях, когда нет стерических препятствий со стороны групп, присоединенных к азоту. Чем выше степень ароматичности гетероцикла, тем труднее идет присоединение и тем легче происходит реароматизация с образованием I. Легкость присоединения убывает в ряду хиноксалин > акридин Ы-бензилидинани-лин фенантридин > изохинолин — хинолин > пиридин [241. Производные дигидропиридина редко удается выделить, поскольку они самопроизвольно окисляются в производные пиридина. Реактивы Гриньяра присоединяются к приведенным выше гетероциклам более медленно, однако их можно применять в тех случаях, когда не удается провести реакцию с алкил- или ариллитиевыми соединениями, а именно при присоединении к Ы-окисям (пример 6.1 и [25])  [c.540]

    Нитрование гетероциклических соединений охватывает настолько широкую область, что здесь будет дано только краткое обсуждение. Для конкретных примеров следует обращаться к монографиям [37, 38], посвященным химии гетероциклов, и к обзору по нитрованию гетероциклических азотсодержащих соединений [39]. Условий нитрования меняются от очень мягких в случае гетероциклов с низкой степенью ароматичности, например тиофена [40] или пиррола [39], до очень жестких в случае азотсодержащих гетероциклов с высокой степенью ароматичности и дезактивирующихся за счет образования солей. Например, пиридин в дымящей серной кислоте с нитратом калия при 300 °С дает около 20% 3-нитропиридина[41]. Несомненно, этот метод может быть улучшен. С другой стороны, N-окнсь пиридина легко нитруется и образуется N-окись 4-нитропирндина (пример 6.2). [c.483]


    Это связано с тем, что в данном ряду дненовый характер гетероцикла уменьшается и одновременно з величнвается ароматичность. Тиофен реагирует как диен только с аринами - исключительно сильными дненофилами. [c.1908]

    В монографии рассмотрены методы получения изонндола и его конденсированных производных, освещены вопросы ароматичности о-хиноидных гетероциклов. Описаны химические свойства изоиндолов и конденсированных систем, содержащих ядро изо иидола. Приведены сведения по электронной, фотоэлектронной, колебательной и ядерной магнитной спектроскопии изоиидолов, а также результаты квантово-химических расчетов. Указаны направления практического использования соединений рассматриваемого ряда. [c.2]

    Изоиндол, как и индол, относится к я-избыточным ароматическим гетероциклам, однако говорить о близкой аналогии в свойствах этих двух изомерных систем нельзя. По электронному строению и свойствам изоиндол близок изобензофурану (бензо(с)-фурану) [302] и изобензо-тиофену [374]. Эти три системы образуют особую группу так назьгоае-мых о-хиноидных гетероциклов. Среди них изоиндол, безусловно, наиболее интересное и важное соединение. Обсуждение результатов, полученных при исследовании изоиндола, иногда требует оригинального подхода, не применявшегося ранее в ряду других ароматически гетероциклов. Большие трудности, например, возникают при рассмотрении вопроса об ароматичности изоиндола. Традиционный подход здесь оказался неэффективным. Проблеме ароматичности изоиндола и других о-хиноидных гетероциклов в монографии посвящен специальный раздел. [c.5]

    Расчет химических сдвигов протонов изоиндола дал следующий ряд б4(7)-н > бкз) н > 6s(6)-H [134]. Данная последовательность была подтверждена экспериментально [135, 142, 159]. В последнее время делаются попытки связать данные по кольцевым токам с ароматичностью циклической молекулы [195]. Так, на основе теории конечных возмущений (FPT) в приближении связанного ( HF) и несвязанного (U HF) методов Хартри — Фока рассчитаны вклады кольцевых токов в константы экранирования [195]. Необходимые для анализа химических сдвигов электронные плотности получены для о-электронной системы с помощью метода Дель Ре, а для л-электронной системы — методом S F Р—Р—Р. Результаты расчетов свидетельствуют в пользу представлений об ограниченной степени ароматичности рассмотренных соединений. При переходе от пятичленных гетероциклов к их бензопроизводным э екты кольцевого тока увеличиваются. Причем аннели- [c.47]

    Трифенилфосфол поглощает в УФ-области при значительно больщей длине волны, чем 1,2,5-трифенилпиррол, что указывает на меньшую ароматичность фосфола. Химические свойства также подтверждают, что в фосфоле (275) гетероцикл обладает слабыми ароматическими свойствами или вообще их лишен, но в спектре ЯМР этого соединения можно найти подтверждение ароматичности. В этом спектре сигналы всех протонов имеют вид сложного мультиплета 2,35—2,9т, но в спектрах оксида, у которого пара электронов фосфора не принадлежит кольцу, этот мультиплет уширен, и один из сигналов, имеющий вид дублета и соответствующий, как предполагают, двум протонам гетероцикла, проявляется отдельно от основного мультиплета в области 3,15т. Соединение (275) не обладает свойствами, характерными для диена оно не реагирует с малеиновым ангидридом или акрилонитрилом в бензоле при 80 °С в отличие от его оксида, дающего в этих условиях нормальные аддукты. Однако при 150—200 °С и фосфол, и его оксид вступают в реакцию Дильса—Альдера с малеиновым ангидридом, которая сопровождается элиминированием мостика PPh и ароматизацией, приводящей к 3,6-дифенплфталевому ангидриду. 1,2,5-Трифенил фосфол (275) взаимодействует с диметиловым эфиром ацетиленди- [c.382]

    Эти азолы имеют планарные молекулы, включающие сопряженную циклическую систему из шести л-электронов, как в молекуле оксазола (1). По химическим свойствам они являются ароматическими соединениями, как видно по их реакциям, например, с некоторыми электрофилами и нуклеофилами. Свободная пара электронов атома азота, которая копланарна с гетероциклом и поэтому не участвует в делокализации, обусловливает слабые основные свойства как в случае пиридина. Многие соли, образуемые азолами, гидролизуются водой с ионами тяжелых металлов оксазолы образуют стабильные комплексы, которые часто используют для выделения азолов. Ароматичностью оксазолов объясняется их устойчивость, однако образующиеся при кватернизации оксазолов и бензоксазолов азолиевые катионы значительно активированы к нуклеофильной атаке. [c.442]

    Винильная группа, связанная с шестичленным гетероциклом, будет иметь иную полярографическую активность, нежели группа, связанная с пятичленным гетероциклом. Пятичленные гетероциклы (тиофен, фуран, пиррол) можно рассматривать как производные бензола, у которого группа —СН = СН— замещена гетероатомом (5, О, Ы), способным поставлять, благодаря гибридизации два электрона в ароматический секстет. Это обусловливает относительно высокие значения энергии сопряжения (в кДж/моль) у тиофена—117, у пиррола 100, у фу-рана — 52. Так как в этих гетероциклах неподеленная пара электронов гетероатома участвует в сопряжении с двойной связью —С = С, то пониженная плотность электронного облака наблюдается на гетероатоме (по сравнению с С-атомами). При этом а-углеродный атом имеет большую электронную плотность, чем находящиеся в -положении по отношению к гетероатому. Особенности распределения электронной плотности в пятичленных гетероциклах сказываются определенным образом и на полярографической активности винильной группы в их винилзамещенных. Винилтиофен и винилфуран на фоне 0,05 М N( 2H5)4I в диметилформамиде образуют волны с - 1/2=—2,312 и —2,449 В соответственно [179]. При сравнении потенциалов полуволн а-винилфурана и а-винилтиофена видно, что винильная группа в первом восстанавливается труднее, чем во втором. Из эффектов, влияющих на полярографическую активность органических молекул, тут следует учитывать, по крайней мере, два а) индукционный эффект самого гетероцикла, определяющего статическую полярность молекул и, в первую очередь, состояние электронного облака на винильной группе б) подвижность я-электронной системы в винильном производном, что связано со степенью ароматичности соответствующего гетероцикла, и способность молекул поляризоваться в электрическом поле электрода. [c.127]

    Этот раздел служит подходящим местом для включения замечательного [184] и воспроизводимого [185] мягкого превращения 2-(индол-3-ил)бромэтана в циклопропилиндоленин с потерей ароматичности гетероцикла в работе [185] показано, что литийорганические соединения можно присоединять непосредственно к иминному фрагменту циклопропилиндоленина и при этом не происходит разрущения малого цикла. [c.440]

    Гетероциклы, подобные пиридину, в которых электронная плотность на атомах углерода понижена, называются л-дефицитны-ми гетероциклическими соединениями. К ним относятся пиридин, пиримидин, пиридазин, пиразин, катионы пирилия и тиопирилия, триазины и др. Пятичленные гетероциклы (пиррол, фуран и тиофен) можно рассматривать как я-избыточные ароматические системы. Индексы ароматичности ЭДОЭ для некоторых гетероциклов приведены в табл. 12.2. Согласно этому критерию, 5-членные гетероциклы менее ароматичны, чем бензол, но пиридин и хинолин по ароматичности сравнимы с бензолом. [c.370]

    Учебное издание английского автора посвящено одному из важнейших разделов органической химии — химии гетероциклических соединений. Рассмотрены критерии ароматичности и неароматич-ности гетероциклов с привлечением теории МО и физико-химических характеристик, а также методы синтеза гетероциклических соединений и номенклатура. [c.575]

    Чем выше ароматичность гетероцикла, тем больше стремление восстановить ее потерю в промежуточном комплексе А выбрасыванием протона из места присоединения. Чем меньше ароматичность, тем медленнее отщепляется протон. Этим можно объяснить отклонение от общей линии поведения гетероциклов 2,5-диметилфурана, который в продукте реакции оказывается присоединенным не положением 3 цикла, а углеродным атомом одной из метильных групп. Предполагается, что первоначально присоединяется цикл, но в силу недостаточного стремления восстановить нарушенную ароматичность отщепление протона от цикла идет медленно и отщепляется протон от метильной группы, по которой и происходит электрофильная атака второй молекулы 4.6-динитробен-зофуроксана [620]  [c.346]

    В этом отношении фуроксановое кольцо не занимает исключительного положения среди гетероциклов. Так, хорошо известная гетероциклическая система сидиона, которая по целому ряду свойств считается ароматической, не выдерживает строгого испытания на ароматичность при применении других критериев, в том числе рентгеноструктурного анализа. Действительно, прецизионный (стандартное отклонение 0,(Ю5 А) рентгеноструктуриый анализ 4,4 -дихлор-3,3 -этилен-<5ис-сидиоиа (17)[151] показал, что в то время как четыре связи плоского пятичлениого кольца по своей длине являются промежуточными между простыми и двойными, пятая внутрициклическая связь, СО (1,407 А), очень близка к чистой [c.31]

    В сильнокислой среде пятичленные гетероциклические соединения утрачивают ароматичность, так как при этом из ароматического секстета уходит пара электронов гетероатома. Это свойство называют ацидо-фобиостью (боязнь кислоты). В результате утраты ароматичности такие гетероциклы по своей ненасыщенности становятся подобны сопряженным диенам и легко полимеризуются (осмоляются) в сильнокислой среде  [c.151]

    Известно, что гидрокси- и аминопроизводные гетероциклического ряда способны к лактим-лактамной и амино-иминной таутомерии соответственно (см. 10.4). Однако, при физиологических условиях нуклеиновые основания существуют только в лактамной и аминной формах. И в лактамных таутомерах, т. е. оксоформе, гетероциклы сохраняют ароматичность и имеют плоское строение (рис. 13.1). Ароматичность гетероциклов лежит в основе их относительно высокой термодинамической стабильности. [c.432]

    Того, лектроотрицательность гетероатомов изменяется в следующем ряду кислород > азот > сера, поэтому резонансные струк-typы VI—IX вносят меньший вклад в случае фурана по сравне нию с пирролом и тиофеном (кислород менее склонен отдавать Вою электронную пару) и, следовательно, фуран является найме- ароматичным из этих трех гетероциклов  [c.98]


Смотреть страницы где упоминается термин Гетероциклы, ароматичность: [c.216]    [c.249]    [c.992]    [c.543]    [c.63]    [c.64]    [c.66]    [c.270]    [c.213]    [c.75]    [c.131]    [c.408]    [c.494]   
Органическая химия. Т.2 (1970) -- [ c.194 , c.522 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.187 , c.509 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматичность

Гетероциклы



© 2025 chem21.info Реклама на сайте