Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения молекулами растворителя

    При растворении реагента А в растворителе 2 происходит физикохимический процесс взаимодействия молекул растворителя с молекулами А с образованием сольватов различной степени сольватации (см. П9). Иногда образуются комплексные химические соединения. В растворах электролитов растворяющееся вещество полностью или частично распадается на ионы, энергия гидратации которых соизмерима с энергией химических реакций. Если при растворении не образуется химических соединений растворенного вещества с растворителем, процесс растворения одного моля к ь т молях 2 можно записать в виде уравнения [c.591]


    Весьма перспективно применение системы электрофорез — ТСХ ири изучении свойств и строения неорганических комплексных соединений. Это обусловлено тем, что скорость движения ионов в тонком слое при электрофорезе зависит только от заряда и радиуса ионов, в то время как значение Rf при движении вещества в. тонком слое под действием движения растворителя связано с числом молекул воды в комплексных соединениях. Сопоставляя эти величины, можно сделать определенные выводы о составе комплекса и его структуре. [c.159]

    В растворах комплексные соли ведут себя как простые соли, и для их растворов характерны все свойства, присущие растворам электролитов повышение температуры кипения, понижение температуры замерзания, понижение давления пара растворителя над раствором, наличие осмотического давления, электропроводимость и др. На основе результатов изучения свойств водных растворов комплексных соединений можно установить характер их ионного равновесия, т. е. соотношение числа катионов к числу анионов в молекуле соединения, и тем самым по составу определить их строение (координационную формулу). [c.337]

    Остальные системы, обсуждаемые далее, включают соединения, которые переходят в органическую фазу благодаря своей способности координировать органические молекулы с образованием различных комплексов экстрагируемого соединения с растворителем. Это может быть комплекс, основанный на образовании водородных связей, или комплекс, в котором молекула растворителя связана с атомом металла или с его первой гидратной оболочкой. Экстракция таких соединений сильно зависит от свойств используемого растворителя, в частности от его основности и стерической доступности донорного атома, а также от природы водной фазы. Простейшим примером является экстракция минеральных кислот, в которой молекулы растворителя координируются главным образом с (гидратированным) ионом водорода. Комплексное соединение (с растворителем) того же типа образуется при экстракции комплексных металлсодержащих кислот, но в данном случае возникают дополнительные осложнения, связанные с образованием комплексного аниона в водной фазе в присутствии минеральной кислоты, которая такл<е экстрагируется это может привести к взаимодействию ионов в органической фазе. [c.7]


    Аналогичное превращение одного комплексного иона в другой происходит и при попадании комплексного соединения в растворитель, молекулы которого образуют с комплексообразователем более прочную связь, чем связь лигандов с центральным ионом растворенного комплекса. Так, при растворении Си[(Н20)4]504-Н20 в жидком аммиаке образуется ион [Си(МНз)4 12+. [c.201]

    Аналогичное превращение одного комплексного иона в другой происходит и при попадании комплексного соединения в растворитель, молекулы которого образуют с комплексо-образователем более прочную связь, чем связь лигандов [c.207]

    Комплексные соединения имеют сложный состав. В них выделяют центральный атом (комплексообразователь) и связанные с ним лиганды (заряженные или нейтральные неорганические или органические частицы, т. е. ионы или молекулы). Для аналитических целей в общем виде реакцию комплексообразования можно представить следующим образом. В растворе ионы металла соль-ватированы, т. е. координируют вокруг себя молекулы растворителя, образуя в случае воды аквакомплексы М(Н20) + (Ы— координационное число комплексообразователя). При введении в раствор лигандов (Ь) веществ, способных образовывать комплекс, происходит последовательное вытеснение молекул воды из внутренней координационной сферы и замещение их лигандами  [c.65]

    На рис. 6 представлены полученные Парри [20] инфракрасные спектры комплексного соединения молекул пиридина с ВНз (кривая /) и иона пиридиния, образующегося при растворении пиридина в НС1 (кривая 2). Сравнение спектров этих соединений со спектром пиридина в нейтральном растворителе (кривая 5) указывает на существенное их различие. [c.43]

    Гидратная (сольватная) изомерия — разное распределение молекул воды (или другого растворителя) между внешней и внутренней сферами комплексного соединения  [c.194]

    В последние годы появляется все больше данных, показывающих, что взаимодействие ионов с молекулами растворителя в значительной степени обусловлено квантовохимическими факторами и по своей природе аналогично образованию координационной связи в комплексных соединениях. [c.283]

    Лучшим растворителем для солей в большинстве случаев является вода (процесс гидратации). Условием экстрагирования ионов из водных растворов является вытеснение растворителем молекул воды из гидратной оболочки с образованием комплексных соединений. Отсутствие гидрофильных групп в комплексных соединениях обусловливает возможность их перехода в органическую фазу. Процесс комплексообразования зависит от значения pH среды регулируя значение pH, можно осуществить селективное экстрагирование веществ. [c.340]

    Так, М. Леблан (1910 г.) предполагал, что скорость разряда ионов на катоде затруднена из-за связывания их в комплексные соединения с молекулами растворителя или комплексообразователя. Разряд комплексного или сольватированного соединения происходит не сразу, а с некоторой кинетической задержкой и таким образом определяет собой течение всего электродного процесса. Однако эта точка зрения не была подтверждена какими-либо экспериментальными данными. Кроме того, ближайшее рассмотрение этой гипотезы показывает ее несостоятельность, поскольку, например, процесс дегидратации протона водорода вряд ли вообще возможен как самостоятельная стадия, так как энергия связи протона с молекулой воды очень велика (около 282 кал на 1 г-ион), а константа диссоциации гидроксония [c.303]

    За последние 20 лет появилось более тысячи публикаций, посвященных кислородсодержащим макроциклическим соединениям. Макроциклические полиэфиры вызвали всеобщий интерес исследователей благодаря способности образовывать координационные соединения с катионами металлов в кристаллическом виде и в растворе. Спектр действия этих лигандов настолько широк, что вопреки принятому мнению о необходимости соответствия жесткости координирующихся частиц они вступают в реакции комплексообразования с представителями самых различных групп металлов — щелочных, щелочноземельных, -переходных, лантаноидов, актиноидов Известны также комплексные соединения краун-эфиров с некоторыми нейтральными молекулами — водой, бромом, органическими растворителями и основаниями, однако в данной книге комплексы такого типа не рассмотрены. Все аспекты возможного практического применения макроциклических полиэфиров — в экстракции, межфазном катализе, аналитической химии, в биологии и медицине, безусловно, связаны с их комплексообразующей способностью. [c.147]

    При этом следует различать случаи, когда анодный продукт хорошо растворим и когда на аноде образуются нерастворимые соединения в виде гидроокисей, основных или нейтральных солей. Переходя в раствор, ион металла либо вступает в связь с молекулами растворителя, либо образует комплексные ионы. Наконец, нужно иметь в виду возможность повышения положительной валентности металлических ионов (соответственно понижения отрицательной валентности комплексных анионов). Если же потенциал анода достигает высоких положительных значений, то ко всем перечисленным направлениям анодных реакций добавляется окисление воды с выделением кислорода. На основании сказанного можно в следующем виде представить классификацию анодных процессов. [c.194]


    Важными продуктами присоединения оксида углерода являются карбонилы металлов, обобщенная формула которых Ме г(СО)у, например Сг(СО)е, Мп2(С0)ю, Fe( 0)5, Рег(С0)9, Со2(СО)а, Ni( 0)4. Карбонилы переходных металлов — жидкости или летучие твердые вещества. Они хорошо растворяются в органических растворителях, отличаются химической устойчивостью. Все они ядовиты, но их токсическое действие не кумулятивно. При нагревании выше определенной температуры карбонилы разлагаются с выделением оксида углерода и металла в мелкодисперсном состоянии. В химическом отношении карбонилы представляют собой комплексные соединения, в которых металлический элемент функционирует в нулевой степени окисления, а в качестве лигандов выступают молекулы оксида углерода. Их донорная активность обусловлена наличием неподеленной электронной пары атома углерода. [c.361]

    Реакции без изменения состояния окисления элементов чаще всего протекают в газовых и жидких растворах с участием ионов. Как известно, ионные реакции обратимы, и теоретически каждой системе ионов при данных условиях отвечает определенное состояние равновесия. Смещение химического равновесия (иногда практически нацело) происходит при уменьшении концентрации каких-либо ионов за счет образования относительно мало ионизирующихся молекул или комплексных ионов малорастворимых или летучих соединений правило Бертолле). Так, в реакции нейтрализации ионное равновесие смещается в сторону образования мало ионизирующихся молекул растворителя, например в водном растворе  [c.207]

    Образование комплексного соединения ароматических углево- -дородов с ионами, находящимися на поверхности адсорбента, так же как и при их растворении в избирательном растворителе, связано с возникновением в электронейтральной молекуле-под влиянием электростатического поля адсорбента дипольного момента. Адсорбируемость так же зависит от строения ароматических углеводородов, как и растворимость. Поэтому, чем меньше экраниро-. ваны ароматические ядра нафтеновыми кольцами или боковыми парафиновыми цепями, тем легче в них возникает индуцированный дипольный момент и тем эффективней адсорбция таких углеводородов полярными адсорбентами. Чем больше колец в молекуле ароматических углеводородов, тем прочней они адсорбиру- -ются. Парафиновые и нафтеновые углеводороды слабо адсорбируются полярными адсорбентами. [c.237]

    В реакциях обмена лигандов комплексного соединения (SJvl-механизм) полярная молекула КХ в переходном состоянии распадается на катион К+ и анион X". В протонных растворителях с большим значением этот процесс сильно ускоряется, так как они способны сольватировать анионы X с образованием водородных мостиков. Одновременно снижается [c.452]

    В частности, ион меди весьма энергично сольватируется в некоторых органических растворителях в присутствии избытка и некоторых неорганических ионов. Это приводит к тому, что в таких растворителях медь располагается в ряду напряжений до водорода и вытеюняет его из растворов кислот. В других условиях щелочная среда, наличие других ионов и молекул, более прочно связывающих окисленную форму метачла в виде комплексного соединения (см. ниже), осадка и т. п. будут иметь место другие соотношения восстановительных активностей металлов. Здесь мы рассматриваем ряд напряжений только для водных растворов солей в нейтральной или кислой средах как самых распространенных и практически важных систем. [c.330]

    Превращения, протекающие во внутренней сфере комплексного соединения, обусловливаются степенью ионогенности связи центральный ион — адденд и зависят от целого ряда факторов. Чем более ионогенной оказывается эта связь, тем легче происходит замещение внутрисферной группы молекулой растворителя и тем выше величина .i. [c.272]

    Явление сольватации обязано тому,, что заряженная частица (ион), появившаяся среди молекул растворителя, изменяет свойства и порядок распределения последних в растворе. Если молекулы растворителя имеют дипольный момент, то они взаимодействуют с ионами, образуя сольватные оболочки. При этом электростатическое бзаимодействие не является единственной причиной сольватации ионов. Сольватация может возникать и за счет некулоповских — химических сил. Многие соли образуют гидраты и сольваты не только в растворах, но и в твердом состоянии. К такому комплексообразованию склонны почти все соли. Например, образование гидратов солей меди является типичным процессом комплексообразования. В таких соединениях связь между ионами и молекулами воды чисто химическая, она обусловлена обычной координационной валентностью, типичной для комплексных соединений. [c.137]

    В настоящее время различными химическими и физическими методами твердо установлена плоская структура 4-координацион ных комплексов платины (II), а также комплексов Рс1 , N1 , Ag Си и Ли . Однако нужно указать, что совсем недавно были получены веские доказательства того, что большинство, если не все плоские квадратные комплексы, в действительности следует рассматривать как тетрагональные, т. е. можно считать, что они имеют пятую и шестую группы, координированные, или, вероятно, следует сказать, расположенные на большем расстоянии от центрального иона, чем четыре лиганда, находящиеся в плоскости. Например, вполне вероятно, что для плоских квадратных ионов в растворе или в твердой фазе, полученной из раствора, молекулы растворителя или даже другие анионы могут занимать пятое и, возможно, шестое координационное место, дополняя искаженный октаэдр вокруг центрального иона. Это подтверждается спектро скопическими данными, полученными для ионов [Рс1С1б1 н [Ni( N)Б] ". Кроме того, были выделены твердые комплексы типа [М(ЛЛ)2Х]С104 (где М — Р(1 или Ы X—С1, Вг или I). Данные по электропроводности растворов этих комплексных соединений в нитробензоле доказывают однозарядность катиона и аниона Даже для Ли , изоэлектронного с Р1 , наблюдали образование [c.236]

    Известно, что в растворе ионы металла окружены сольватной оболочкой либо связаны с молекулами растворителя в устойчивом комплексном соединении. Поэтому любой ион, прежде чем перейти в кристаллическую решетку, должен освободиться от связывающей его оболочки. Природа растворителя или комплексообразователя оказывает при этом весьма значительное влияние, так как обусловливает величину затрат энергии на десольватацию. Особое значение в гидрометаллургии и гальванотехиике приобрели комплексные соли, которые нацело диссоциируют на ионы по схеме [c.336]

    Как изменяется энтропия раствора комплексного соединения при выходе из внутренней сферы молекул растворителя, если этому процессу способствует повы- шение температуры (Сы. пример с r lj). [c.121]

    Кобальт с указанными реагентами в зависимости от условий проведения реакций дает два типа соединений. В щелочной среде образуется соединение, легко растворимое в воде, состава СоКз, в кислой среде — состава СоРз, которое мало растворимо в воде и хорошо растворимо в неводных органических растворителях. Плохая растворимость в воде комплексных соединений типа СоРд обусловлена тем, что из шести координатных мест кобальта заполненными являются четыре, а два других заняты молекулами воды. Комплексы состава СоР з кинетически инертны и не разрушаются даже в сильнокислых средах, в то время как комплексы N1, Си, Ре состава МеРз с аналогичными лигандами разрушаются в кислых средах, что и позволяет проводить определение кобальта в присутствии больших количеств данных элементов. [c.160]

    Растворимость малорастворимого сильного элекфолита зависит от его природы и природы растворителя, температуры, давления (обычно зависимость от давления мала, если не поглощаются и не выделяются газообразные вещества), присутствш других электролитов в растворе (как имеющих, так и не имеющих одноименные ионы с рассматриваемым малорастворимым электролитом), а также различных веществ (в том числе нейтральных молекул), способных образовывать комплексные соединения с данным малорастворимым электролитом или вступающих с ним в другие химические реакщ1И. [c.86]

    Большую группу координационных соединений составляют так называемые смешанные комплексные соединения, содержащие во внутренней сфере разные лиганды. Если одним из лигандов считать координированный растворитель (например, воду), то, очевидно, к числу смешанных следует отнести координационно ненасыщенные комплексы, такие, как МЫНз, МР и т. д., поскольку вакантные координационные места в таких комплексах заняты молекулами воды. Однако обычно к смешанным соединениям относят соединения с двумя или несколькими лигандами, не считая растворителя. [c.259]

    Общая характеристика растворов. Процесс растворения—сложный физико-химический акт, а не простое распределение частиц одного вещества между частицами другого, которое в какой-то степени применимо для описания разреженных газовых смесей. В жидких и твердых растворах частищл растворителя и растворенного вещества непосредственно взаимодействуют между собой и находятся на таких коротких расстояниях, как и в химических соединениях. Взаимодействие молекул растворителя с растворяемым веществом зависит от сил разнообразной природы, за счет которых в растворе образуются устойчивые комплексные и полимерные соединения, способные существовать вне раствора,— сольваты, а в случае водных растворов — гидраты. [c.78]

    От степени отклонения растворов от идеальности. Как отмечалось, в растворах электролитов ионы проти-воположных знаков чередуются, соблюдая некоторую закономерность расположения, при этом они могут слипаться, захватывать в свои ионные сферы молекулы растворителя, образовывать гидратные и комплексные формы соединений, которые трудно учесть, и т. д. [c.113]

    А. М. Лукин 37 нашел, что характерной особенностью таких кетонов, как бензаитрон, является их способность давать с серным ангидридом комплексные соединения, названные им суль-фон-оксидами. Сульфон-оксиды образуются при непосредственном действии серного ангидрида на сухой пороптообразный полициклокетон (иногда взятый в инертном растворителе при О—5° или даже при комнатной температуре). Количество 50з соответствует 1 молекуле серного ангидрида на каждую карбо пильную группу. Исследование свойств сульфон-оксидов пока зало, что они вполне устойчивы при комнатной температуре почти нерастворимы в неполярных органических растворителях водой легко разлагаются с образованием серной кислоты и ис ходногр полициклокетона. [c.263]


Смотреть страницы где упоминается термин Комплексные соединения молекулами растворителя: [c.140]    [c.27]    [c.217]    [c.71]    [c.169]    [c.464]    [c.487]    [c.30]    [c.464]    [c.487]    [c.176]    [c.378]    [c.298]    [c.353]   
Краткая химическая энциклопедия Том 2 (1963) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Растворители молекулами



© 2024 chem21.info Реклама на сайте