Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент смеси газовой

    Рассмотрим процесс потерь, когда резервуары с газовой обвязкой эксплуатируются при большом коэффициенте оборачиваемости. Если случаю, когда операции закачки—выкачки не совпадали, предшествовал случай опорожнения рассматриваемой части заполняемых резервуаров с совпадением операций, то в эту часть резервуаров поступала паровоздушная смесь из другой части резервуаров. Поэтому потери от одного большого дыхания из резервуаров с газовой обвязкой будут больше, чем из обычных резервуаров без газовой обвязки, газовое пространство которых не обогащалось парами продукта из других резервуаров. Исследованиями Уфимского нефтяного института установлено, что при использовании на резервуарах, эксплуатирующихся при большом коэффициенте оборачиваемости, газовой обвязки доля потерь нефти или нефтепродукта находится в параболической зависимости от коэффициента совпадения операций. Получена расчетная зависимость для определения минимального значения коэффициента совпадения операций для группы резервуаров с газовой обвязкой, начиная с которого эта обвязка будет. экономически эффективна [1]. [c.111]


    Допустим теперь, что мы хотим вычислить коэффициенты переноса газовой смеси, если известны не все потенциалы взаимодействия молекул ее компонентов. Возникает вопрос можно ли получить эти коэффициенты, зная свойства газов, из которых состоит рассматриваемая смесь Для этой цели используют так называемые комбинационные соотношения, или правила смешивания, и, поскольку нельзя рассчитывать на их точность, их часто применяют лишь для того, чтобы получить разумные оценки величин требуемых коэффициентов. Наилучшие результаты дает применение комбинационных соотношений к потенциалам (а не к коэффициентам переноса), так как при этом легче подобрать физические аргументы, оправдывающие такую процедуру. [c.244]

    Растворимость в топливе кислорода, азота и инертных газов, являющихся компонентами воздуха, различна. При 15,5° С коэффициент растворимости кислорода в керосине равен 0,0285, азота — 0,0157. Вследствие этого, кислород растворяется в топливе в большей пропорции, чем его содержится в воздухе. Поэтому газовая смесь, которая выделяется из топлива, богаче кислородом, чем обычный воздух. Объемное отношение азота к кислороду в ней составляет 2,07 1, тогда как у воздуха оно равно 3,76 1. Это явление увеличивает пределы взрываемости смесей, образующихся с парами топлива. [c.54]

    Пример 11. Коэффициенты абсорбции кис.порода и азота прн 0°С равны соответственно 0,049 и 0,023. Газовую смесь, содержащую 20 % (об.) О2 и 80% (об,) Nj, взболтали с водой прн [c.110]

    Газовую смесь, содержащую 40% (об.) N2O н 60% (об.) N0, растворяли при 17°С и постоянном давлении в воде до полного насыщения последней. Рассчитать процентный состав (по объему) газовой смеси после выделения ее из воды, если при 17°С коэффициенты абсорбции N2O и N0 составляют соответственно 0,690 и 0,050. [c.115]

    Коэффициенты абсорбции кислорода и азота при 0 С равны соответственно 0,049 и 0,023. Газовая смесь, содержащая 20% О2 и 80% N2, подвергнута взбалтыванию с водой при 0°С. Каков состав газовой смеси, растворенной в воде Определить состав газовой смеси после выделения ее из раствора и повторного растворения в воде (при той же температуре). [c.32]

    С целью получения количественных зависимостей для коэффициентов массообмена между газом и жидкостью (в частности, от размера частиц) было предпринято еще одно исследование абсорбции двуокиси углерода. Для опытов использовали колонну внутренним диаметром 102 мм жидкой фазой служила водопроводная вода, газовой — смесь двуокиси углерода и азота, твердой — стеклянные шарики диаметром 1 и 6 мм. Объемные коэффициенты массообмена А / рассчитывали по экспериментальным данным, пренебрегая продольным перемешиванием (из-за отсутствия данных об. этом факторе в газожидкостных псевдоожиженных системах). [c.673]


    Из (1.50) и (1.51) следует, что для определения и, следовательно, коэффициентов активности в жидкой фазе достаточно экспериментальных данных по равновесию бинарных смесей компонентов, составляющих данную многокомпонентную смесь. Коэффициент активности к-го компонента в газовой смеси, находящейся в равновесии с жидкой фазой, определяется соотношением [40] [c.53]

    Зависимость растворимости газов в жидкостях от давления. Если газ химически не взаимодействует с растворителем, то зависимость растворимости газа в жидкости от давления выражается законом Генри. Для идеальных растворов закон Генри может быть выражен уравнением (128.7). Закон Генри справедлив только тогда, когда растворение газа в жидкости не связано с процессами диссоциации или ассоциации молекул растворяемого газа. Расчет растворимостей газов по уравнению (128.7) при высоких давлениях приводит к ошибкам, если не учитывать зависимость коэффициента Генри от давления. Характер изменения растворимости некоторых газов от давления в воде при 298 К показан на рис. 126. С изменением давления газа растворимость различных газов меняется неодинаково и подчинение закону Генри (128.7) наблюдается лишь в области невысоких давлений. Различие в растворимости газовых смесей и чистых газов в жидкости определяется взаимным влиянием отдельных газов друг на друга в газовой фазе и взаимным влиянием растворенных газов в жидкой фазе. При низких давлениях, когда взаимное влияние отдельных газов невелико, закон Генри справедлив для каждого газа, входящего в газовую смесь, в отдельности. [c.383]

    Все описанные методы можно применять как для чистых газов, так и для смесей. Если известен состав смеси и вириальные коэффициенты отдельных компонентов, то может быть рассчитан вириальный коэффициент взаимодействия (как рассматривалось в разд. 2.8), однако ошибка при этом накапливается. Для примера рассмотрим бинарную газовую смесь. Как уже указывалось выше, 5см определяется следующим образом  [c.114]

    В равновесие со сжатым газом. Другими словами, твердое вещество и жидкость как бы растворяются в сжатом газе. Если пары и газ образуют идеальную смесь, то растворимость будет пропорциональна их давлению с небольшой поправкой на внешнее давление (эффект Пойнтинга). Отклонение от идеальности приводит к изменению в растворимости, из которого можно получить сведения по вириальным коэффициентам взаимодействия. Общий обзор этого метода был сделан Роулинсоном и Ричардсоном [189]. Они вывели уравнение для случая увеличения растворимости при условии, что газ не растворяется в жидкости или твердом веществе и что мольная доля паров в газовой фазе мала  [c.116]

    Сжиженный газ, например, пропан-бутановую фракцию (см. рис. 39) заправляют в специальные топливные баллоны. Для сохранения жидкого состояния при температурах более высоких, чем комнатная (до 45-50 °С), пропан-бутановая смесь находится в топливном баллоне под давлением 1,6 МПа. Пропан-бутановые смеси характеризуются высоким коэффициентом объемного расширения при увеличении температуры на 10 °С давление в газовом баллоне повышается на 30-35 %. Во избежание разрушения при повышении температуры в топливных баллонах предусматривается газовая подушка с минимальным объемом не менее 10 % всего объема [10]. [c.154]

    Для математического описания реактора с псевдоожиженным слоем катализатора часто используют двухфазную модель , согласно которой псевдоожиженный слой можно представить в виде двух фаз плотной , состоящей из однородного слоя взвешенных частиц катализатора, через который движется реакционная смесь, и дискретной , т. е. газовых пузырей, проходящих через плотную фазу. Дискретная фаза не содержит частиц катализатора и в ней реакции не протекают. Между дискретной и плотной фазами происходит массообмен. Перемешивание реакционной смеси в плотной фазе описывается эффективным коэффициентом диффузии. Температуру псевдоожиженного слоя можно считать постоянной. Мы ограничимся рассмотрением реакторов с псевдоожиженным слоем, для которых характерны условия  [c.46]

    В процессах конверсии газовая смесь многокомпонентна. Поэтому необходимо определять средний коэффициент диффузии для смеси..  [c.67]

    Ацетилен извлекали из газовой смеси отмывкой водой под давлением (см. раздел 4) выделенный из водного раствора ацетилен содержал 30% углекислоты. Газовую смесь, оставшуюся после выделения ацетилена, подвергали вторичному сожжению в кислороде, чтобы избавиться от метана. В результате получался газ, состоящий только из окиси углерода и водорода его использовали как обычный газ синтеза (гл. 3). Подробное описание установки, конструкции форсунок и данные о расходных коэффициентах приведены в отчете, на который сделана ссылка. [c.279]


    Пример 44. Коэффициенты адсорбции кислорода и азота при 0°С равны соответственно 0,049 0,023. Газовая смесь, содержащая 20% Оа и 80% Na, подвергнута взбалтыванию с водой при 0°С. Каков состав газовой смеси, растворенной в воде (при той же температуре)  [c.34]

    Если в жидкости растворяется смесь газов, то в уравнение закона действующих масс входит парциальное давление растворенного газа, а константа К меняется в зависимости от природы газа (она как раз соответствует стандартному (химическому) потенциалу данного газа). Например, растворимость кислорода в воде в два раза выше, чем растворимость азота это имеет большое значение для процесса обмена веществ у рыб. В применении к газовым смесям рассмотренная выше закономерность называется законом Генри — Дальтона. Константа К может иметь различные размерности. Для применяемых чаще всего размерностей эта константа называется коэффициентом поглощения Бунзена. Он представляет собой отношение объема газа (приведенного к О С и нормальному давлению) к единице объема растворителя при парциальном давлении газа р=101 325 Па. [c.260]

    Пример 3. В газометре над водой имеется смесь газов состава (об. доли, %) Из 0,20 СН4 0,70 СО 0 10. Каков состав (об. доли) газовой смеси, растворенной в воде при н. у. Коэффициенты растворимости Н2, СО и СН4 соответственно равны 0,0217, 0,0354 и 0,0556. [c.81]

    Из соотношения (IV.8) следует, что коэффициент разделения при термодиффузии без конвекции нетрудно определить, если известна постоянная термодиффузии ат (термодиффузионный фактор), зависящая от природы компонента смеси. С некоторым приближением ат может быть найдена расчетным путем исходя из положений молекулярной теории смеси газов с наложенным на эту смесь температурным градиентом. Для проведения соответствующих расчетов требуется знание характера межмолекулярного взаимодействия в заданной газовой смеси. Теоретическое вычисление постоянной термодиффузии возможно лишь при использовании той или иной модели межмолекулярного взаимодействия. Выбор модели определяется требуемой точностью оценки величины ат и связанными с ней расчетными трудностями. Соответствующие вычисления существенно упрощаются для смесей изотопов. [c.162]

    Пример 2. Газовая смесь, состоящая из 78 об. % N2 и 22 об. % О2, содержится над водой. Вычислить процентный состав газовой смеси, растворенной в воде при 0° С, если коэффициент растворимости азота /N1=0,024, а кислорода /ог = 0,049. [c.196]

    Совокупность уравнений (V. 51) и (V.52) характеризует термодинамические свойства идеальной газовой смеси. Функции смешения для нее такие же, как для смеси идеальных газов однако понятия идеальная газовая смесь и смесь идеальных газов не равнозначны идеальная газовая смесь может быть образована и реальными газами, с коэффициентами фугитивности, отличными от единицы. Как уже отмечалось, реальные газы образуют идеальную смесь, строго говоря, в том случае, если одинаковы потенциалы для всех имеющихся в системе типов взаимодействия. Однако рассмотренными соотношениями пользуются иногда для приближенных оценок свойств газовых смесей произвольного типа. Выражения (V. 50) и (V. 51) известны под названием правила Льюиса, которое можно сформулировать следующим образом  [c.239]

    Смесь газов под давлением 1 ат, состоящая по объему из 52% СО и 48% СОа, промывается в ледяной воде. Определить объемы (в литрах) обоих газов, растворенных в 1 воды, и процентный состав (по объему) газовой смеси, растворенной в воде. Коэффициент абсорбции СО равен 0,035. [c.103]

    Пример 3. Газовая смесь, давление которой равно 1 атм, содержащая 72% Nj, 18% Оа и 10% Oj, растворяется в воде при 0° С. Коэффициенты абсорбции этих газов равны соответственно 0,023, 0,049 и 1,71. Вычислить процентный состав газа, выделенного из воды. [c.37]

    Вычисление химического потенциала компонентов по уравнению состояния со вторым вириальным коэффициентом. Это уравнение — первое усложнение, приближающее уравнение состояния идеального газа к реальному газу. Уравнение является строго теоретическим и практически применимо для условий, в которых объем газа больше удвоенного среднего молярного критического объема составляющих газовую смесь компонентов. Уравнение состояния со вторым вириальным коэффициентом [c.132]

    Газодинамическое влияние электрического поля на скорость распространения пламени может осуществляться только через теплопроводность. Рассмотрим простую схему. К концам трубки, в которой происходит горение газовой смеси, приложена разность потенциалов. Плоский фронт горения перемещается вдоль трубки. Отрицательный потепциал приложен в зоне свежей смеси. Электрическое поле действует на заряженные частицы с определенной силой. Под действием этой силы положительные попы начинают ускоренное движение в свежую смесь. На своем пути они сталкиваются с нейтралами, передавая им часть энергии, приобретенной при движении в электрическом поле, и перемещая их в направлении своего движения. Образуется так называемый электрический ветер. В результате этого движения увеличивается коаффициент взаимной диффузии, коэффициент теплопроводности и, следовательно, скорость распространения пламени. [c.77]

    Методы диффузии и т е р м о д и ф ф у з и и. Диффузионный метод разделения соединений стабильных изотопов в газовой фазе основан на различии скоростей диффузии легкого и тяжелого компонентов смеси. Еще в конце прошлого века английским физиком Рэлеем было показано, что смесь различных газов с разной молекулярной массой может быть частично разделена при диффузии ее через пористую перегородку. Коэффициент разделения смеси газов а при этом пропорционален корню квадратному из отношения молекулярных масс компонентов смеси  [c.41]

    Много общего с диффузионным методом разделения изотопов имеет метод термодиффузии, основанный на эффекте, открытом в середине прошлого века. Эф( кт термодиффузии заключается в том, что если поместить какую-либо газовую или жидкую смесь между стенками сосуда, имеющими различную температуру, то более легкий компонент будет перемещаться к горячей стенке, в то время как тяжелый компонент будет концентрироваться у холодной стенки. Теория термодиффузии приводит к соотношению, согласно которому коэффициент разделения пропорционален разности масс молекул смеси. [c.42]

    MOM водой контактном конденсаторе. Несконденсировай-шиеся газы очищаются на электростатическом фильтре, после прохождения которого газы подогреваются и направляются на абсолютные фильтры нз стекловолокна. Такая система позволяет получить коэффициенты очистки паро-газовой фазы 10 удельная активность газов перед выбросом в атмосферу не превышает 2-10 кюри/л. При достижении содержания в битуме около 40% радиоактивных шламов полученная смесь через специальный разгрузочный коллектор выливается в металлические барабаны объемом 220 л каждый. Герметичность присоединения барабанов к разгрузочным вентилям достигается с помощью гидравлического подъемника. Эта установка эксплуатируется с 1963 г. За шесть лет на ней было переработано около 250 т радиоактивного шлама с удельной активностью 1 10 —1 10 кюри/л. [c.234]

    В первой этановой колонне, имеющей 30 тарелок и работающей под давлением 17,5 ат, из газового бенэина отгоняется этан. Остаток из этановой колонны поступает во вторую колонну также с 30 тарелками, работающую под давлением 9,8 ат (температура верха 70°, температура низа 108—132°), в которой из высококипящих углеводородов отгоняются пропан, н-бутан и изобутан. Дистиллят подается насосом под давлением 17,5 ат в колонну с 30 тарелками, в которой отгоняется пропан (температура верха 50°, температура низа 108°). Смесь изомерных бутанов фракционируется в колонне с 50 тарелками, работающей с коэффициентом орошения 17 1, при температуре верха 62°, температуре низа 76,5° и давлении 8,7 ат. [c.29]

    Хвангом и Дж. М. Торманом на примере мембранного колонного аппарата на полых волокнах [24, 25] при усло вии противоточного движения потоков в напорных и дренажных каналах в режиме идеального вытеснения. При этом принимали следующие допущения исходная смесь газов подается внутрь полых волокон — в трубное пространство колонны геометрические размеры волокон, вязкость и плотност газовой смеси, коэффициенты проницаемости компонентов являются функцией изменяющегося давления в напорном пространстве аппарата (Р1) температура в колонне и давление в дренажном пространстве (Рг) постоянны. [c.216]

    Увеличение давления приводит к значительному возрастанию коэффициента проницаемости ЗОг в полимере [125, 131, 134]. Это происходит, вероятно, благодаря пластифицирующему эффекту, вызванному растворением ЗОг в полимере. При этом увеличиваются значения фактора разделения зоа/Ыг.ог- Как правило, совместная проницаемость ком понентов газовой смеси не подчиняется правилу аддитивности. Так, проницаемость азота растет в пр исутствии диоксида серы, особенно при высоких концентрациях последнего, причем присутствие N2 ингибирует проницаемость ЗОг [135]. Возможность взаимодействия ЗОг и N2 затрудняет предсказание скоростей проницаемости этих газов в смесях из данных для чистых газов. Исследования по разделению 502-содержащих газовых смесей показали возможность извлечения диоксида серы из топочных газов с помощью мембран ПВТМС и РЭТСАР [124, 136]. Определены оптимальные условия проведения процесса для 70%-го извлечения ЗОг из газов, при этом газовая смесь, содержащая 1,5% (об.) диоксида серы обогащалась до 6% (об.) (при перепаде давлений на мембране 0,1 МПа), что вполне д0стат0Ч Н0 для автотермической переработки в серную кислоту. [c.332]

    Осуществимость газового реактора можно исследовать на основе сравнительно простой модели. Задача состоит в определении особенностей и размеров такой системы, исходя из некоторых приемлемых характеристик. Для этого исследуем следующие простейшие модели 1) реактор — газовая сфера радиусом Яд без отран ателя 2) критический реактор в стационарном состоянии 3) источником энергии является только реакция деления 4) внешняя граница сферы имеет абсолютную температуру Т=Т Яд = Тд, 5) газовая смесь — инертная система при некотором фиксированном давлении р 6) потери эпергии из газа существуют только благодаря проводимости, поэтому пренебречь радиацией, конвекцией н силами гравитации 7) односкоростное уравнение диффузии дает достаточно правильное представление о нейтронной физике 8) экстраполированное граничное условие применимо 9) коэффициент диффузии пространственно инвариантен (предполагается некоторое среднее значение для смеси) 10) коэффициент теплонроводностн может быть представлен некоторым средним значением f. [c.184]

    В распространенных случаях, когда жидкий углеводород расходуется не полностью и образуется равновесная паро-газовая смесь, взрывобезопасность реактора нитрования (окисления) обеспечивается его термоста-тированием. Пределы взрываемости смесей, образующихся в технологических процессах, изучены экспериментально в основном для нормальных условий. Пределы, соответствующие более высоким давлениям, могут быть вычислены по величине барического коэффициента е [см. уравнение (3.3)], который можно определить для модельного компонента. Значения в для смесей с окислами азота примерно такие же, как для смесей с кислородом. [c.82]

    Рабочая газовая смесь сильно разбавлена инертными компонентами. Кроме того, реакции очистки протекапт без изменения объема. Поэтому, несмотря на некоторые различия коэффициентов диффузии компонентов смеои, можно пренебречь влиянием Стефановского потока и диффузионной стехиометрии на скорость процесса. [c.70]

    Процессы, протекаюш ие в колонке при вакантохроматографии, нетрудно понять исходя из приводимых ниже чисто качественных соображений. Предположим, что через колонку непрерывно пропускается анализируемый газ, состоящий из компонентов 1, 2 и 3, разбавленных газом-носителем. Обозначим мольные доли компонентов смеси через и Пусть сорбируе-мость возрастает от компонента 1 к компоненту 3. Если в колонку после установления сорбционного равновесия ввести пробку инертного газа, то на переднем фронте этой пробки вследствие фронтально-десорбционного процесса возникает профиль концентраций, схематически представленный в области II на рис. 10, а. Образуются три фронта, каждый из которых в соответствии с уравнением (21) движется с определенной скоростью зависящей от коэффициента распределения данного компонента. На замыкающий край газовой пробки все время поступает анализируемая смесь. Следовательно, здесь возникают три сорбционных фронта (область I на рис. 10, а), скорости движения которых также различны и выражаются уравнением (19). Таким образом, вскоре после введения инертного газа в колонке возникает распределение концентраций, схематически представленное на рис. 10. [c.436]

    Смешанный принцип сжигания. В промышленной топочной технике широко применяются и промежуточные смешанные принципы действия горелок. В газовых горелках это может сводиться к простейшему приему предварительного смешения топливного газа с частью воздуха, необходимого для горения. Такая смесь будет характеризоваться коэффициентом избытка воздуха, заведомо меньши м единицы (а, <1). Идущий на образование этой первичной смеси воздух принято называть первичным. Воздух же, подаваемый в рабочее пространство топки, дополнительно и независимо от потока топлива называется вторичным. Большинство горелок промышленного типа работает именно по этому смешанному принципу подобно тому, как это в маленьких масштабах делается на горелках лабораторного типа, если в них предусмотрена регулировка первичной смеси по первичному избытку воздуха (а, -1 ). В этом случае, изменяя состав смеси, выдаваемой горелкой, можно переходить от чисто кинетического горения (а1>1) к чисто диффузионному (ят = 0), проходя все промежуточные этапы между ними . Такой прием может служить удобным добавочным принципом регулировки, так как изменение соотношений между первичным и вторичным воздухом, что и приводит к изменению избытка воздуха в первичной смеси, непосредственно воздействует на форму и рабочий объем факельного горения. [c.127]

    Вторым направлением в развитии процессов циклонного типа является сжигание в очень сильно закрученных потоках высококалорийных сортов углей (пока это — газовые и жирные, спекающиеся каменные угли). Для развития возможно более высоких температур процесса применяется повышенный воздухоподогрев, доводимый до 40(Р С и выше. В этих случаях топочные газы, покидающие циклонную камеру, развивают температуру до 1 800° С и выше, что обеспечивает при соответствующих свойствах золы перегретое, легко текучее состояние шлаков, которые и удаляются из камеры через специальную летку. Так как температуры плавления шлаков заметно снижаются при недостатке воздуха, то жидкое удаление шлаков оказывается возможным и при коэффициентах избытка воздуха ниже единицы (а-<1). В этом случае циклонная камера выдает из горловины смесь продуктов полного и неполного сгорания, вытягивая огневой факел в камеру догорания. При некотором, даже самом ничтожном избытке воздуха циклонный процесс, основанный на быстром, высокотемпературном газовыделении и бурном смесеобразовании, обеспечивает высокую полноту тепловыделения. [c.195]

    В конце 50-х годов заводы нашей страны, использовавшие в качестве сырм твердое топливо, начали переходить на газовое сырье — прнродный газ, а также попутные нефтяные газы. Газовое сырье для производства синтетического аммиака можно легко переработать в азотоводородную смесь, что позволяет создать Бысоксавтоматизированные заводы большой единичной мощности с применением энерготехнологической схемы. Создание таких крупных предприятий связано с уменьшением удельных капиталовложений и расходных коэффициентов, а следовательно, позполяет получать дешевый синтетический аммиак и иметь относительно небольшую численность персонала. [c.76]


Смотреть страницы где упоминается термин Коэффициент смеси газовой: [c.22]    [c.328]    [c.328]    [c.215]    [c.510]    [c.383]    [c.85]    [c.171]    [c.187]    [c.404]   
Расчеты основных процессов и аппаратов нефтепереработки (1979) -- [ c.109 ]

Расчеты основных процессов и аппаратов нефтепереработки Изд.3 (1979) -- [ c.109 ]




ПОИСК







© 2024 chem21.info Реклама на сайте