Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакторы классического анализа

    Решение задач, связанных с отысканием оптимальных условий проведения химических реакций, несомненно играет важнейшую роль в общей организации химического производства, так как зачастую позволяет при этом же аппаратурном оформлении и тех же затратах сырья получить большой выход полезной продукции или повысить ее качество. Кроме того, химические процессы решающим образом влияют на > экономику производства, поэтому существенное значение приобретает экономически обоснованный выбор эксплуатационных параметров химических реакторов. В данном разделе изучены оптимальные условия для ряда простейших реакций, проводимых в различных аппаратах, с учетом разных экономических оценок эффективности процессов. При этом рассмотренные ниже примеры могут явиться иллюстрацией возможностей использования методов исследований функций классического анализа для решения частных задач оптимизации химических реакторов. [c.108]


    Решение задачи оптимизации непрерывного реактора идеального вытеснения в общем случае значительно более сложно, чем оптимизация реактора идеального смешения. Это в первую очередь обусловлено тем, что реактор вытеснения представляет собой объект с распределенными параметрами и его математическое описание содержит дифференциальные уравнения, решение которых в аналитической форме может быть получено лишь в весьма ограниченном числе случаев. В связи с этим ниже рассмотрены некоторые частные задачи оптимизации реакторов идеального вытеснения, которые можно решить при использовании методов исследования функций классического анализа в аналитической форме либо в форме процедуры вычислений, приводящей к определению оптимальных условий. [c.117]

    Методы исследования функций классического анализа, рассмотренные в предыдущих главах, за исключением лишь некоторых случаев, наиболее эффективно применяются для оптимизации процессов с сосредоточенными параметрами. Лишь в ряде случаев, используя особенности математического описания конкретных процессов, указанными методами удается решить некоторые задачи оптимизации процессов с распределенными параметрами. Для этих процессов решение характеризуется не совокупностью значений конечного числа независимых переменных, а соответствующей функцией независимой переменной (как, например, при решении задачи выбора оптимального температурного профиля в реакторе вытеснения). [c.202]

    Детерминированным называется такой процесс, в котором определяющие величины изменяются непрерывно по вполне определенным закономерностям. При этом значение выходной величины, характеризующей процесс, однозначно определяется значением входной величины. Для описания детерминированных процессов применяют методы классического анализа и численные методы. Примером детерминированного процесса может служить процесс в проточном реакторе с мешалкой, в котором достигается равномерное перемешивание. [c.11]

    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) исследование функций классического анализа 2) метод множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование. Однако общего метода, пригодного для решения всех без исключения задач, возникающих на практике, нет. Вместе с тем каждый из перечисленных выше методов имеет предпочтительные области применения. Так, метод динамического программирования наилучшим образом приспособлен для решения задач оптимизации многостадийных процессов. Такие задачи чаще всего возникают при проектировании процессов ООС и СК, осуществляемых либо в многоступенчатых реакторах, либо в каскадах реакторов. Поэтому мы в сжатой форме рассмотрим основные положения метода динамического программирования. [c.191]


    Применение классических методов математического анализа и вариационного исчисления для оптимизации химических реакторов наталкивалось на значительные затруднения, связанные с наличием в реальных задачах ограничений на фазовые и управляющие переменные. Аналогичные трудности возникали при постановке оптимальных задач в других областях науки и техники. Это способствовало развитию таких мощных методов, как метод динамического программирования принцип максимума методы нелинейного программирования 2о-22  [c.10]

    Следующий важный этап оптимизации химических реакторов — выбор метода расчета оптимальных режимов. Широкое распространение получили как классические методы математического анализа и вариационного исчисления, так и новые методы — принцип максимума динамическое и нелинейное программирование. В системе автоматической оптимизации время расчета оптимальных режимов Тр должно быть существенно меньше среднего времени между двумя последовательными возмущениями, т. е. [c.21]

    Реактор, в который помещается исследуемое вещество, облучается мощной короткой вспышкой света, создаваемой специальной импульсной лампой с непрерывным спектром излучения. Вспышка получается при разряде батареи конденсаторов, заряженных предварительно до высокого напряжения. Электрическая энергия достигает десятков килоджоулей при длительности вспышки в несколько десятков микросекунд. Под действием облучения происходит диссоциация молекул исследуемого вещества. Концентрация активных частиц непосредственно после вспышки оказывается столь значительной, что ее можно измерить. В классическом флеш-фотолизе анализ проводится при помощи спектров поглощения анализирующая лампа также представляет собой импульсную лампу, излучение от которой после прохождения через исследуемое вещество и спектрограф снимается на фотопластинку. Проводя серию опытов с различными задержками анализирующей лампы относительно вспышки, можно проследить за изменением концентрации активных частиц во времени. [c.304]

    Навеску анализируемого соединения (0,3—0,5 мг) сжигали в платиновой лодочке при 950° С в потоке гелия с кислородом (3%). Продукты сжигания проходили через слои окиси меди и серебряной ваты. Затем газовый поток направляли в реактор, в котором при 500° С на слое меди восстанавливались окислы азота. Кроме того, в этом реакторе избыток кислорода удалялся в результате окисления меди. Поток гелия вместе с двуокисью углерода, азотом и водой поступал через небольшую колонку с силикагелем, на которой адсорбировалась вода, в первую ячейку катарометра. Площадь регистрируемого пика ири этом отвечала сумме двуокиси углерода и азота. Далее газовый поток проходил через короткий реактор, в котором абсорбировалась двуокись углерода, и поступал на вторую ячейку катарометра. Площадь регистрируемого пика в этом случае была пропорциональна количеству азота. При быстром нагревании ловушки с силикагелем до 200° С вода десорбировалась и регистрировалась первой ячейкой катарометра. Десорбцию воды осуществляли через 12 мин. после введения образца в аналитическую систему. Зависимость площадей соответствующих пиков от содержания анализируемых элементов линейна. Для получения калибровочных коэффициентов рекомендуется проводить 1—2 сжигания в день для стандартных соединений. За один день может быть проведено 32 анализа. Отклонения по углероду +0,3%, по азоту +0,4%, по водороду +0,1%. Отмечается, что точность по углероду приближается к точности классических методов, а для водорода точность в несколько раз выше [34]. [c.152]

    При изучении каталитических реакций не так давно исследователям приходилось использовать относительно большие лабораторные реакторы для того, чтобы получать продукты реакций в количествах, достаточных для перегонки в аналитических целях, т. е. несколько сот миллилитров. Это было связано с тем, что не существовало других методов определения химического состава этих продуктов. Анализ с помощью этого классического эксп и-ментального метода отнимает много времени, эксперимент обходится дорого из-за необходимости иметь большие количества анализируемых веществ. Эти недостатки особенно сказываются при работе с дорогостоящими или радиоактивными веществами. [c.21]

    Наиболее чувствительным из классических радиохимических методов является радиоактивационный анализ, позволяющий при облучении анализируемых образцов в ядерных реакторах интенсивными потоками нейтронов (- 10 нейтрон см -сек) определять около 70 элементов с чувствительностью 10 —10 % [16—20]. Оба варианта метода— прямой инструментальный и радиохимический — позволили успешно решить важнейшую проблему анализа чистых веществ, полупроводниковых и конструкционных материалов, горных пород. Наибольшая чувствительность достигается только при применении радиохимического выделения определяемых элементов, однако необходимость определения химического выхода ухудшает точность и увеличивает продолжительность анализа. [c.106]

    В общем случае, процессы в дохроматографическом реакторе-форколонке можно записать в виде уравнения, аналогичного уравнению образования новой фазы (например, нерастворимого осадка) в классическом анализе (см. также гл. V)  [c.501]


    В дальнейшем при помощи классических методов математического анализа и вариационного исчисления удалось получить ряд интересных и важных результатов. Прежде всего необходимо отметить монографию Г. К. Борескова в которой были приведены уравнения для определения оптимальных температур и времен контакта в адиабатическом полочном реакторе с промежуточными теплообменниками при условии, что процесс характеризуется единственной реакцией. Тот же метод использован для расчета оптимальных режимов работы указанного реактора с введением холодной реакционной смеси после первой полки и промежуточными теплообменниками между последующими цолками В ряде других статей выведены уравнения для определения оптимальной температурной кривой как в случае некоторых частных схем протекания реакций так и в общем случае [c.9]

    По скорости и эффективности хроматография аминокислот уже начала превосходить классические системы детектирования, и дальнейшее усовершенствование анализаторов продолжалось на основе более глубокого изучения кинетики реакции аминокислот с нингидрином и отработки конструкции реактора и колориметра [7, 16, 17]. В результате удалось еще более повысить разрешение и чувствительность анализа. Время одного анализа составляло уже менее 8 ч, и, следовательно, появилась возможность увеличить эффективность за счет круглосуточной работы прибора. Большинство операций уже осуществлялось в автоматическом режиме, однако для полной автоматизации необходимо было иметь блок ввода образцов (автосамплер). Первая модель устройства с одной петлей для ручного ввода образца уже была разработана [18], поэтому не составляло труда преобразовать ее в блок для автоматического ввода большого числа образцов. В дальнейшем для этих целей были созданы специальные патроны [19]. Теперь рабочая программа, заложенная в программирующее устройство, стала включать и управление автосамплером. Высокая эффективность прибора потребовала включения в систему интегратора или ЭВМ для автоматического обсчета результатов анализа. В последующих разделах дано описание неавтоматического базового анализатора и анализатора Te hni on, а затем совсем коротко приведены основные характеристики современных аминокислотных анализаторов. [c.316]

    Леренос результатов теоретического анализа изотермического варианта на неизотермический в рассматриваемых ситуациях достаточно прост и связан с определением температурной зависимости констант. Это особенно ценно, так как процессы иол и-меризации, как правило, протекают в условиях саморазогрева массы вследствие экзотермической реакции роста цепи. Тепловые режимы в этом случае в целом подобны процессам, описываемым классической теорией теплового взрыва для непроточных реакторов [93, 94]. Обычно рассматриваются предельные простые модели Семенова и Франк-Каменецкого [93, 95], соответствующие моделям периодического реактора идеального смешения и периодического реактора без смешения. [c.53]

    В частностп, во многих областях химической технологии распространены аппараты, использующие интенсивное гидродинамическое взаимодействие веществ, находящихся в различных агрегатных состояниях. К таким аппаратам с неоднородными гидродинамическими системами относятся барботажные реакторы, ректификационные и абсорбционные колонны, двух- и трехфазные псевдоожилсенные слои и т. д. Все эти системы характеризуются интенсивным перемещиванием взаимодействующих потоков, которое происходит на фоне интенсивных гидродинамических флуктуаций различной природы и масштабов. Интенсивная турбулизация потоков сопровождается нарушениями сплошности течений, образованпем каверн и газовых каналов, интенсивных циркуляционных контуров и т. д. Эти явления существенно осложняют применение методов классической гидродинамики к анализу и расчету неоднородных гидродинамических систем. [c.42]

    Основным средством решения перечисленных выше задач является аппарат качественной теории дифференциальных уравнений. Эта развивающаяся теория позволяет зачастую без нахождения решений уравнений дать представление о решении в целом и его характерных чертах. Значительный вклад в исследование вопросов динамики химических систем был сделан Д. А. Франк-Каменецким. Его классическая монография [394] послужила основой для последующих работ. Знаменательно, что он сразу же оценил новые экспериментальные данные о критических явлениях в изотермических химических системах и дополнил второе издание своей книги анализом этих фактов. Б. В. Вольтер и И. Е. Сальников успешно использовали методы, развитые школой А. А. Андронова, применительно к динамике простейших химических реакторов [153]. Значительно дальше подобные исследования были продвинуты в монографиях Ариса [443] и Перлмуттера [324]. Качественный и численный анализ критических явлений в моделях теории горения дан в работах А. Т. Лукьянова и сотр. (см., например, [106]). [c.27]


Смотреть страницы где упоминается термин Реакторы классического анализа: [c.110]    [c.14]   
Методы оптимизации в химической технологии издание 2 (1975) -- [ c.108 , c.117 ]




ПОИСК





Смотрите так же термины и статьи:

Классические



© 2025 chem21.info Реклама на сайте