Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодический реактор идеального смешения

Рис. 11.24. Зависимость отношения времени контакта в реакторе идеального смешения к времени периодической реакции от степени полноты реакции ири различных порядках реакции. Рис. 11.24. <a href="/info/1392332">Зависимость отношения</a> <a href="/info/1415570">времени контакта</a> в <a href="/info/326379">реакторе идеального смешения</a> к времени <a href="/info/83899">периодической реакции</a> от <a href="/info/85101">степени полноты реакции</a> ири различных порядках реакции.

Рис. У1.2. Распределение концентрации реагента в периодическом реакторе идеального смешения Рис. У1.2. <a href="/info/324676">Распределение концентрации реагента</a> в <a href="/info/1465600">периодическом реакторе идеального</a> смешения
    Таким образом, мы выяснили, какая связь существует между уравнениями материального баланса для реактора идеального вытеснения и периодического реактора идеального смешения. С другой стороны, можно показать, что усреднение уравнения (1,9) по объему реактора приводит к уравнению материального баланса для непрерывного реактора идеального смещения. Закон сохранения массы для одного из исходных веществ, подаваемых в реактор, записывается при этом следующим образом  [c.18]

Рис. У1П-4. Зависимость степени превращения отг температуры для необратимых реакций, протекающих в изотермических условиях (проточный реактор идеального смешения реактор идеального вытеснения реактор периодического дей-Рис. У1П-3. К примеру УИМ. ствия). Рис. У1П-4. <a href="/info/330551">Зависимость степени превращения</a> отг температуры для <a href="/info/4908">необратимых реакций</a>, протекающих в <a href="/info/10331">изотермических условиях</a> (<a href="/info/1529052">проточный реактор идеального смешения реактор</a> <a href="/info/41748">идеального вытеснения реактор</a> периодического дей-Рис. У1П-3. К примеру УИМ. ствия).
    Б. ПЕРИОДИЧЕСКИЙ РЕАКТОР ИДЕАЛЬНОГО СМЕШЕНИЯ [c.288]

    Другой способ показать, что необходимое время контакта в реакторе идеального смешения всегда больше, чем время периодической реакции, — это сравнить две формулы  [c.186]

    Почему для проведения процесса полимеризации периодический реактор идеального смешения может быть лучше проточного (см. также разд. 4.9.4)  [c.225]

    Производство фенолоформальдегидных смол осуществляется периодически и непрерывным методом. В качестве варочного котла— реактора-—в периодическом методе применяются цилиндрический аппарат, изготовленный из легированной стали, биметалла или никеля, вместимостью 5—15 м со сферическим дном, в котором имеется сливной штуцер с краном или запорным устройством для выпуска готовой смолы. В крышке расположен загрузочный дюк и смотровые стекла. Реактор, работающий в режиме, близком к полному смешению, снабжен мешалкой якорного типа и водяной рубашкой для подогрева (охлаждения) реакционной смеси. Для непрерывной поликонденсации (рис. 97) используют реакторы идеального смешения. Аппарат представляет собой колонну, состоящую нз расположенных одна над другой секций (рис. 98). Мешалки всех секций имеют общий вал и приводятся в движение От одного двигателя. Все исходные вещества поступают в колонну смешения при атмосферном давлении и 95—98°С. Образовавшаяся смола отделяется от надсмольной воды в сепараторе и направляется на сушку, а затем через смолоприемник на охлаждение. [c.220]


    Реакцию окисления этилбензола проводили в периодическом реакторе идеального смешения при температуре 120 °С,, расход кислорода составлял 0,6 л/мин. Методика анализов продуктов окисления и проведения эксперимента аналогична [6]. [c.52]

    Иа всех типов химических реакторов аппараты без смешения потока, или, как мы будем их называть, трубчатые реакторы, отличаются наибольшим разнооб-разпем. В реакторах идеального смешения содержимое реактора стараются сделать как можно более однородным при проектировании же трубчатых реакторов цель состоит в том, чтобы избежать перемешивания. В идеальном случае каждый элемент потока проводит в реакторе одно и то же время. Таким образом, процесс в трубчатом реакторе напоминает периодическую реакцию в замкнутом объеме, причем координата, отсчитываемая по направлению движения потока, выполняет функцию времени. Конечно, такое утверждение слишком упрощает картину, однако желательно пметь в виду указанное соответствие между двумя процессами. [c.253]

    Реактор периодического действия представляет собой сосуд, во всех точках которого концентрации и температуры одинаковы реактор идеального смешения). Поэтому следует определять только степень превращения в различные моменты времени (см. ниже). За протеканием реакции в периодически действующем аппарате можно проследить по изменению 1) концентрации данного компонента 2) некоторых физических свойств системы, например электропроводности или показателя преломления 3) общего давления в системе с постоянным объемом 4) объема в системе с постоянным давлением. [c.58]

    Принципиальная схема лабораторного реактора периодического действия идеального смешения приведена на рис. X. 1,а. Быстрое выравнивание концентраций реагентов Сг (г = 1,2,. .., п) по объему достигается использованием мешалок с большим числом оборотов. Температура смеси поддерживается постоянной с помощью термостата. В подобных реакторах проводят исследование гомогенных жидкофазных реакций. Исходные вещества С,- с концентрациями с (0) заливаются в реактор, текущие концентрации с ( ) измеряются непрерывно или дискретно, в моменты времени th (Л = 1,2,..., т). Интервал времени th+ — ih должен быть таким, чтобы разность превышала абсолютную [c.253]

    Исследование адиабатических реакторов дает естественный переход от реакторов идеального смешения, рассмотренных в предыдущей главе, к трубчатым и периодическим реакторам, которым посвящены последующие главы. Назвать реактор адиабатическим значит определить способ проведения процесса, но ничего не сказать о типе реактора. Как реакторы идеального смешения (в этом мы уже имели случай убедиться), так и трубчатые реакторы могут работать в адиабатических условиях, т. е. без подвода или отвода тепла. В этой главе мы воспользуемся результатами, полученными нами для реакторов идеального смешения, и введем только простейшую модель трубчатого реактора. [c.214]

    Возможность потери устойчивости — один из существенных недостатков реакторов идеального смешения. Еще более очевидный их недостаток заключается в необходимости сильного увеличения среднего времени контакта для достижения заданной степени превращения сырья, по сравнению с временем периодического процесса или [c.278]

    Предстоит проанализировать несколько факторов. Во-первых, необходимо знать влияние температуры и давления на равновесный выход, скорость реакции и состав полученных продуктов. Это даст возможность определить оптимальный температурный режим процесса, т. е. программу изменения температуры во времени для периодического процесса, оптимальное распределение температур по длине реактора идеального вытеснения или по аппаратам каскада проточных реакторов идеального смешения. Указанные данные позволяют также успешно выполнить расчет реакторов. [c.205]

    V-2. При изотермическом процессе в периодически действующем реакторе за 780 сек превращается в целевой продукт 70% исходного жидкого реагента. Каковы должны быть условное и действительное времена пребывания, а также-объемная скорость, чтобы достигнуть указанной степени превращения а) в реакторе идеального вытеснения и б) в проточном реакторе идеального смешения  [c.126]

    Теперь можно дать сравнительную оценку эффективности различных способов организации процесса. Реактор идеального вытеснения и периодически действующий реактор обеспечивают максимальный выход промежуточного продукта Я, поскольку в этих реакторах не происходит смешения потоков с различными концентрациями веществ, участвующих в реакциях. В проточном реакторе идеального смешения нельзя получить сколько-нибудь высокий выход промежуточного продукта Н, так как поток свежего исходного вещества постоянно смешивается с продуктами реакции. Приведенный ниже пример иллюстрирует эти положения. [c.177]


    На рис. УИ-12 изображены кривые выхода промежуточного вещества Я в реакторе идеального вытеснения и в проточном реакторе идеального смешения. Эти кривые можно с успехом применять при расчете реакторных схем, в которых протекают последовательные реакции первого порядка. Рис. УП-12 показывает также, что выход промежуточного продукта Я всегда выше в реакторе идеального вытеснения, чем в проточном реакторе идеального смешения. Следовательно, когда целевым продуктом является промежуточный продукт Я и стоимость исходных веществ незначительна, лучше пользоваться реактором идеального вытеснения или периодически действующим реактором. [c.182]

    Кривые, показывающие зависимость концентраций веществ от времени, принципиально могут быть построены для. любых последовательных реакций различных порядков. Применительно к реактору идеального вытеснения или периодического действия построение указанных кривых требует совместного решения основных дифференциальных уравнений. При использовании проточного реактора идеального смешения приходится совместно решать только систему алгебраических уравнений. В обоих вариантах точное аналитическое решение сложно и может быть получено лишь для некоторых специальных случаев. Поэтому наиболее целесообразны численные методы исследования описываемых реакций. Однако кривые, которые построены таким образом, качественно всегда идентичны показателям, свойственным последовательным реакциям первого порядка. [c.183]

    Замечания, аналогичные тем, которые были сделаны для реак-, тора периодического действия, справедливы и для реактора идеального вытеснения. Проведение процесса в проточном реакторе идеального смешения предусматривает постоянное перемешивание свежих порций компонента Л с частично прореагировавшими продуктами., В результате подобной неравномерности следует ожидать снижения избирательности процесса по отношению к промежуточному продукту Я. [c.191]

    Графическое представление зависимостей. На рис. VII-17 и УП-18 в безразмерных координатах показано графическое решение уравнений (УП,33) и (УП,36) в виде кривых состава продуктов в реакторах идеального вытеснения и периодического действия и в проточном реакторе идеального смешения. Как отмечалось выше, для веществ Л, 7 и 5 справедливы характеристики, подобные тем, которые отражают состав продуктов при последовательных реакциях первого порядка. [c.193]

    I — реактор периодического действии или идеального вытеснения 2 — проточный реактор идеального смешения А — бензол Н — монохлорбензол 5 — дихлорбензол Т — трн- [c.197]

    Рассмотрим процесс, протекающий при изотермическом режиме в реакторе идеального вытеснения, в проточном реакторе идеального смешения или в реакторе периодического действия, и выясним, как в этих условиях температура влияет на степень превращения основного реагента. [c.212]

    I — проточный реактор идеального смешения 2 — проточный реактор идеального вытеснения или периодически действующий реактор Л —число мономерных звеньев в молекуле полимера В — содержание данного полимера в продуктах реакции. [c.198]

    I — проточный реактор идеального смешения 2 — реактор идеального вытеснения или реактор периодического действия. [c.198]

    Представим себе огромное количество глобул одинакового раз- — мера, заполняющих проточный реактор идеального смешения, каждая из которых ведет себя подобно маленькому периодически действующему реактору. Степень превращения исходного вещества в каждой глобуле зависит только от времени пребывания ее в аппарате и от кинетики реакции. Это в равной степени относится к любой глобуле в потоке, выходящем из реактора. . [c.303]

    В настоящее время высшие хлорированные парафины /хлор-парафины/ различных марок находят все более широкое применение в промышленности и спрос на них непрерывно возрастает. Они, например, успешно применяются в качестве пластификаторов для различных полимеров, в частности, такого крупнотоннажного продукта, как поливинилхлорид. Для улучшения пластифицирующего действия и совместимости хлорпарафинов с полимерами желательно получать как можно более однородные по химическому составу и строению продукты. Зто обстоятельство необходимо учитывать при построении математической модели процесса глубокого хлорирования. мшдких н-пара №ов, в ходе которого получают промышленные образны хлорпарафинов, а также при разработке конкретных реакторов для этого процесса. В настоящей работе проведено теоретическое исследование кинетики со-ответствуюшюс реакций, протекающих в периодическом реакторе идеального смешения. [c.24]

    Для изучения кинетики каталитических реакций может быть использован реактор любого типа периодического действия, идеального смешения или идеального вытеснения. Поскольку в таких реакциях присутствует лишь одна жидкая или газовая фаза, скорость можно находить так же, как и в случае гомогенных реакций. Необходимо только следить за правильностью размерностей величин в примененном уравнении и за тем, чтобы они были определены соответствующим образом и точно. Это объясняется разнообразием выражений, которые могут использоваться для описания кинетики про- [c.425]

    Есть различия в характере изменения скоростей процессов в зависимости от режима работы реактора. В реакторах с периодической загрузкой новой порции реагентов и отводом продуктов реакции концентрации реагентов и скорость процесса уменьшаются по мере его осуществления. По длине непрерывнодействующего проточного реактора идеального вытеснения наблюдается аналогичная зависимость. Что касается реакторов идеального смешения, то концентрации в них реагирующих веществ и продуктов поддерживаются почти постоянными от зоны загрузки до зоны выгрузки массы из аппарата. [c.196]

    Как уже говорилось выше, каждый элемент реагирующей смеси, движущийся вдоль реактора идеального вытеснения, ведет себя, как замкнутая реакционная система. Отсюда ясно, что уравнение (1,16) определяет тепловой баланс не только для периодическою реактора идеального смешения, но и для реактора идеального вытеснения. Для этого реактора <1Т1сИ является субстанциальной производной. Переходя от нее к локальным по формуле, аналогичной уравнению (1,10), получим уравнение теплового баланса реактора идеального вытеснения в таком виде  [c.20]

    Для реактора идеального вытеснения или периодического реактора идеального смешения уравнение теплового баланса преобразуегся к виду  [c.552]

    Леренос результатов теоретического анализа изотермического варианта на неизотермический в рассматриваемых ситуациях достаточно прост и связан с определением температурной зависимости констант. Это особенно ценно, так как процессы иол и-меризации, как правило, протекают в условиях саморазогрева массы вследствие экзотермической реакции роста цепи. Тепловые режимы в этом случае в целом подобны процессам, описываемым классической теорией теплового взрыва для непроточных реакторов [93, 94]. Обычно рассматриваются предельные простые модели Семенова и Франк-Каменецкого [93, 95], соответствующие моделям периодического реактора идеального смешения и периодического реактора без смешения. [c.53]

    Строят зависимости изменения основных параметров процесса— концентрации и степени превращения NaOH и этилацетата— по объему единичного реактора полного смещения и каскада реакторов. Определяют влияние скорости подачи реагентов, соотношения расходов NaOH и этилацетата и температуры на показатели процесса. Не меняя времени пребывания, проводят реакцию в одних и тех же условиях, но изменяя число реакторов ib системе от одного до четырех. (Сохранение постоянного времени пребывания при увеличении числа реакторов осуществляют увеличением расхода реагентов.) Делают выводы о влиянин числа реакторов в каскаде на показатели процесса. Моделируют процесс омыления этилацетата в единичном реакторе идеального смешения и каскаде реакторов. При составлении математического описания принимают уравнение для идеального реактора (П1.105) и кинетическое уравнение (111.101). Значения константы скорости получают при работе на периодическом реакторе (см. работу Периодический реактор идеального смешения ) или берут из справочной литературы. [c.293]

    Четыре рассматриваемых типа реакторов связаны между собой как в физическом, так и в математическом отношении. Реактор с принудительным перемешиванием, или реактор идеального смешения, отличается от трубчатого реактора как по конструкции, так и по описывающим его уравнениям однако трубчатый реактор с достаточно интенсивным продольным перемешиванием потока приближается к режиму идеального смешения. Периодический реактор представляет собой реактор идеального смешения, в котором существует проток реагентов, но описывается он теми же уравнениями, что и простейшая модель трубчатого реактора. Термин адиабатический относится скорее к режиму реактора, чем к его конструкции, так как и реактор идеального смешения, и трубчатый, и периодический реактор могут быть адиабатическими. При исследовании различных типов реакторов нельзя в равной мере дать характеристику каждого реактора — частично из-за того, что различные вопросы изучены неодинаково полно, а частично из-за того, что некоторые проблемы трудно изложить на том доступном уровне, которого мы собираемся придерживаться в этой книге. Например, нестационарные уравнения для реактора идеального смешения являются обыкновенными дифференциальными уравнениями, и мы можем провести их анализ достаточно полно. Стационарный режим трубчатого реактора уже описывается обыкновенными дифференциальными уравнениями, а для описания его поведения в нестационарном режиме требуются дифференциальные уравнения в частных производных, анализ которых представляет весьма трудную задачу. Там, где это возможно, мы стараемся представить результаты более глубокого лнализа сложных задач в виде качественных описани11 и графиков, [c.10]

    Перейдем теперь к определению оптимального температурного режима процесса, понимая под этим температурные условия, при которых обеспечивается максимальная производительность по целевому продукту в данном реакторе. Такой оптимум ыожет быть обеспечен как при Т = onst, так и при изменении температуры во времени для реактора периодического действия по длине для реактора идеального вытеснения от аппарата к аппарату для каскада проточных реакторов идеального смешения. [c.217]

    Однако, из рис. 11.25 видно также, как преодолеть указанный недостаток реакторов идеального смешения. Проведем реакцию от степени полноты до степени полноты с помощью двух реакторов, в первом из которых растет от до а во втором — от до Ер. Тогда время контакта в первом реакторе будет равно площади прямоугольника АРСН, а во втором — площади прямоугольника Н1СО. Очевидно, суммарное время контакта для двух реакторов будет меньше, чем для одиночного, потому что первый реактор теперь работает в условиях, когда скорость реакции выше. Если теперь пспользовать несколько реакторов, мы получим несколько таких прямоугольников с правыми верхними углами, лежащими на кривой. Чем больше число стадий, тем меньше суммарное время контакта, и в пределе мы достигнем площади под кривой, т. е. времени периодической реакции. [c.187]

    Так как при любом Т подлежит свободному выбору, то почти очевидно, что температура должна быть выбрана так, чтобы подынтеграль пое выражение было максимальным ири всех значениях мы говорим почти очевидно , так как мы видели в главе IX, что это положение нельзя обобш,ать на случай более, чем одной реакции. Точное доказательство этого можно получить либо рассматривая периодический реактор как последовательность бесконечно большого чпсла бесконечно малых реакторов идеального смешения, либо приняв доказательство, полученное для трубчатого реактора в разделе IX.5. Разумеется, что если Т не ограничено технологическими пределами, то 7 ( ) лежит на кривой в плоскости Т (рис. Х.З) и Т )) = г ( ). При малом I величины Г (I), / , ( ) и —(1ТУ(11 становятся очень большими, так что в начале процесса поддерживать температуру на кривой невозможно. Предположим, что верхний предел температуры настолько высок, что это ограничение пе чувствуется, но величина д достигает максимального возможного значения д в точке Ь на кривой Это означает, что мы можем поддерживать оптимальный режим только выше точки Ь, но не ниже ее, и надо показать, каково будет оптимальное решение нри малых степенях полноты реакции с учетом этого ограничения. Если А — точка, в которой выполняется соотношение [c.312]

    XI1I-11. При взаимодействии бензола с хлором в действительности сначала образуется целевой продукт (монохлорбензол), который затем в присутствии хлора переходит в полихлорпроизводные. Для получения монохлорбензола с максимальным выходом предполагается оценить следующие спобобы проведения процесса хлорирования и выбрать из них наиболее подходящий режим идеального вытеснения с прямотоком и противотоком каскад проточных реакторов идеального смешения с прямотоком и противотоком периодический процесс процесс в проточном реакторе идеального смешения. [c.407]

    Таким образом, основным условием оптимального проведения сложных реакций является правильный выбор аппаратурного оформления процесса с учетом характера движения жидкости в реакторе. Это условие определяется стехиометрическими соотношениями и наблюдаемой кинетикой реакций. Для обеспечения высокого выхода целевого продукта можно осуществлять процесс при высоких и низких концентрациях (параллельные реакции) или при постоянно соотношении концентраций (последовательные реакции) различных компонентов. В соответствии с. указанным требованием выбирают подходящую гидродинамическую модель, которая может быть реализована в реакторах периодического и пол упер иодического действия идеального вытеснения или в проточном реакторе идеального, смешения при медленном или быстром введении исходных реагентов. [c.199]

    Нормально считается, что жидкость находится в микросостоянии. Поэтому все предыдущие выводы о закономерностях протекания реакций в гомогенных системах основывались именно на указанном положении. Посмотрим теперь, как будут осуществляться процессы в периодически действующих реакторах, реакторах идеального вытеснения и в проточных реакторах идеального смешения в случае нахождения жидкости в макросостоянии и как сегрегирование молекул влияет на характеристики процессов в этих реакторах. [c.302]

    Практическое использование соответствующего уравнения скорости в технологических расчетах встречает известные трудности, хотя процессы, аналогичные рассмотренным в данном разделе, изучены достаточно подробно. Приложение таких уравнений к расчету периодически действующего реактора, реактора идеального вытеснения и проточного реактора идеального смешения можно найти в работе Трамбоуза [c.378]

    Лекпия 20. Реактор идеального смешения периодический Лекпия 21. Реактор идеального вытеснения Лекпия 22. Реактор идеального смешения непрерывный Лекпия 23. Сравнение реакторов различных типов. [c.343]


Смотреть страницы где упоминается термин Периодический реактор идеального смешения: [c.208]    [c.139]    [c.103]    [c.106]    [c.382]    [c.318]   
Смотреть главы в:

Практикум по общей химической технологии Издание 3 -> Периодический реактор идеального смешения




ПОИСК





Смотрите так же термины и статьи:

Реактор идеально смешения

Реактор идеального

Реактор идеального смешения

Реактор смешения



© 2025 chem21.info Реклама на сайте