Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Умножители электронные

    Фотоэлектронные умножители. Для измерения интенсивности монохроматического излучения чаще всего используют фотоэлектронные умножители (ФЭУ). Они представляют собой вакуумные фотоэлементы, в которых многократное усиление фототока происходит за счет вторичных электронов. Между интенсивностью светового потока, воздействующего на фотокатод, и возникающим фототоком в широком интервале наблюдается линейная зависимость. Длинноволновая граница спектральной чувствительности фо- [c.191]


    Электронные вакуумные приборы [1, 15] используют внешний фотоэффект (фотоэлементы, фотоэлектронные умножители, электронно-оптические преобразователи) или внутренний фотоэффект (электронно-лучевые трубки). Электронно-вакуумные приборы имеют малый диапазон спектральной чувствительности к тепловому излучению (до длин волн 1,5—3 мкм), что ограничивает их применение. Фотоэлементы не получили широкого применения из-за малой чувствительности. [c.183]

    Детектирование ионов. После прохождения системы масс-анализатора ионы попадают в детектор. Отдаваемый ими заряд через высокоомное сопротивление отводится в землю. Падение напряжения на этом сопротивлении пропорционально количеству ионов. После достаточного усиления его можно измерить подходящим регистрирующим устройством, которым могут быть компенсационный самописец, аналоговый цифровой преобразователь, и др. При выполнении качественных исследований (когда часто необходимо измерять очень малые ионные токи) для предварительного усиления в основном используются электронные умножители. По сравнению с простыми детекторами чувствительность благодаря этому повышается на несколько по-рядков. Однако коэффициент усиления в определенной степени зависит от массы и структуры детектируемых ионов [116]. [c.287]

    Из различных видов фотоэлектрических детекторов излучения, основанных на внутреннем и внешнем фотоэффекте (фотоэлементы, фотосопротивления, фотоумножители, счетчики фотонов, электронно-оптические преобразователи и усилители, фотодиоды), для измерений в УФ- и видимой областях спектра наибольшее распространение получили фотоэлектронные умножители (ФЭУ) и фотодиоды. [c.79]

    Применение. Ц. и его соединения применяются в радиотехнике, приборостроении, для изготовления электровакуумных фотоэлементов, фотоэлектронных умножителей, электронно-оптических преобразователей, в полупроводниковой технике, для производства сегнетоэлектриков и пьезоэлектрических кристаллов, в производстве аккумуляторов, в процессе крекинга нефти. [c.57]

    Приемниками, использующими для преобразования падающего излучения внешний фотоэффект, являются фотоэлектронные умножители, электронно-оптические преобразователи, телевизионные трубки и фотоэлементы. [c.115]


    Из ионного источника пучок, содержащий ионы попадает в поле магнитного анализатора 4. Ионы отклоняются в магнитном поле на определенный угол в соответствии с отношением заряда к массе, и число их регистрируется при помощи вторичного электронного умножителя 5. Малый магнитный анализатор 6 служит для выделения пучка ионов А . [c.26]

    Для детектирования ионов применяют электронные умножители с большим коэффициентом усиления, быстродействием и сравнительно ма- [c.266]

    Для определения Т используют методы, основанные на торможении электронов в электростатическом поле, регистрацию малых электронных потоков производят с помощью фотоэлектронных умножителей. Результаты получают в виде графика распределения фотоэлектронов по энергиям. Пики (линии) на графике соответствуют фотоионизации электронов с различных уровней атома или молекулы. [c.257]

    Принцип работы фотоэлектронного умножителя основан на явлении вторичной эмиссии электронов. На рис. 129 приведена схема ФЭУ. Он представляет собой стеклянный баллон, в котором создан глубокий вакуум. В баллоне расположены фотокатод 2, диноды 3 и анод (коллектор) 4. Фотокатод примыкает непосредственно к фосфору 1. На ди-нодах создается последовательно возрастающий по отношению к катоду положительный потенциал. [c.338]

    Коллектор ионов и усилитель. Обычно такой коллектор состоит из одной или более ограничивающих щелей и так называемого фарадеевского цилиндра (узкий закрытый с одного конца длинный цилиндр). Ионный пучок, подлежащий измерению, входит в коллектор вдоль его оси, сигнал усиливается с помощью электрометрического усилителя или электронного умножителя. [c.369]

    Для детектирования заряженных частиц (электронов, ионов, возникающих прн ионизации) в настоящее время наиболее широко используются два метода 1) детектирование ионов при помощи масс-спектрометра или просто вторичным электронным умножителем (ВЭУ) 2) детектирование изменения импеданса (полного [c.184]

    По принципу действия вакуумным фотоэлементам аналогичны фотоэлектронные умножители (ФЭУ) [1,5]. Электроны, вылетающие из катода под влиянием падающего (рис. 76) излучения, попадают на промежуточный электрод—динод и выбивают из него дополнительное количество электронов, которые, попадая на следующий динод, вызывают появление новых электронов. Усиленный таким образом поток электронов достигает анода. При десяти каскадах в таком умножителе можно достигнуть усиления порядка миллиона. Чувствительность ФЭУ и темновой ток сильно зависят от напряжения на динодах. По- [c.242]

    Ультрафиолетовые лучи в аналитической химии 837, 3201—3204 в хроматографии 837—842 селективное рассеяние ультрафиолета как метод анализа химич. структур 7114 Ультрахемископ 837 Умножители электронные каскадные, см. фотоумножители Уравнение Ильковича. коэффициент диффузии 999 Уран [c.394]

    В фотоэлектрическом методе регистрации соотношения интенсивностей спектральных линий определяемого элемента и элемента сравнения осуществляют с помощью квантометров. Металлическую пробу, состав которой следует определить, укрепляют в штативе, она служит одним из электродов, между которыми с помощью генератора возбуждается электрический разряд. Спектральный прибор разлагает излучение в спектр. Аналитические линии выделяются с помощью выходных щелей, установленных в фокальной плоскости спектрального прибора. Световые потоки линий проецируются на катоды фотоэлектронных умножителей, фототоки которых заряжают накопительные конденсаторы, и измеряются электронно-регистрирующим устройством. Выходной регистрирующий прибор выдает показания в виде логарифма отношения интенсивностей линий определяемого элемента и элемента сравнения. Аналитические графики строят в виде зависимости показания прибора от логарифма концентрации определяемого элемента в эталонах. [c.690]

    Счетчиком служит сцинтилляционный счетчик, состоящий из умножителя ФЭУ-31 с кристаллом КаЛ/Т1. Электронная схема измерительного прибора подобна схеме прибора с датчиком просвечивающего типа. [c.48]

    Вторичный электронный умножитель (ВЭУ) является одним из основных видов детекторов ионов в современных масс-спектрометрах. Ионы, прошедшие анализатор и имеющие энергию 1-10 кэВ, попадают на коллектор, которым является первый дииод ВЭУ. Каждый ион выбивает из первого динода один или большее число электронов. Эти электроны ускоряются разностью потенциалов между первым и вторым динодами ( 100 В) и выбивают из второго динода следующую порцию дополнительных электронов. Таким образом происходит умножение начального количества выбитых электронов на всех 10-20 ступенях умножителя и на последний динод, на каждый детектируемый ион приходится до 10 электронов. Такие умножители электронов с дискретными динодами отличаются как большйм коэффициентом усиления, так и быстродействием и сравнительно малым шумом. Динамический диапазон их достаточно велик — от 10 (что соответствует одному иону в секунду) до 10 А. Недостатком ВЭУ этого типа является старение , т.е. изменение характеристик со временем или в результате загрязнения. Другой тип ВЭУ с распределенными динодами (каналтроны) характеризуется большей стабильностью. Каналтроны прочны и устойчивы к внешним воздействиям. Максимальный ток каналтрона значительно меньше, чем у ВЭУ с дискретными динодами (= 10 А). [c.859]


    Вряд ли сейчас можно назвать какую-либо область науки, техники или промышленного производства, где бы не применялись тонкие пленки. Металлопленочные элементы используются в точных измерителях мощности и аттенюаторах, вентилях и фильтрах сверхвысоких частот. На основе пленочной технологии изготовляются комбинированные термопары, металлополупроводниковые болометры, пленочные терморезисторы и тензометры. Тонкие пленки находят широкое применение в металлографических исследованиях, при нанесении оптических покрытий, при изготовлении люминесцентных панелей, а также мишеней, используемых в ядер-ных экспериментах. Производство многих типов электронных приборов (электроннолучевых трубок, фотоэлектронных умножителей, электронно-оптических преобразователей и др.) немыслимо без применения тонкопленочных слоев. [c.3]

    Триггерное устройство представляет собой простейший умножитель электронов. На внешнёй стороне одной из катодных пластин нанесен слой /3-активного нуклида. Испускаемые им электроны ускоряются [c.199]

    Установка для исследования кинетики роста и растворения кристаллов, включающая в себя ячейку-трубу, представлена на рис. 3.14. Установка состоит из термостатированной трубчатой ячейки, снабженной щлюзом для вывода частиц. По высоте ячейки через фиксированные расстояния установлены электронно-оптические преобразователи (ЭОП), представляющие собой блок из источников света и фотоприемника, снабженного щелевой диафрагмой. Фотоприемник выполнен на основе фотоэлектронного умножителя ФЭУ-74. Ячейка-труба с ЭОП представляет собой источник информации ИИ-1 в автоматизированной системе исследования кинетики роста кристаллов (рис. 3.15). Принцип действия ЭОП основан на прерывании светового потока, проходящего через щелевую диафрагму на фотоприемник, движущейся частицей. Сигнал с фотоприемника поступает на устройство первичной обработ- [c.293]

    Для усиления фотопотока, поступающего с фотоэлектронного умножителя, применяли фотоэлектрический усилитель Ф-120/2 с коэффициентом усиления Кус = 7000. Усилитель питается постоянным током. Индикатрисы записывали осциллографом Н-107. Для питания фотоэлектронного умножителя разработан малогабаритный высоковольтный стабилизированный выпрямитель, который представляет собой двухдиапазонный стабилизированный источник напряжения от 600 до 2000 В. Питание контрольноизмерительной аппаратуры установки осуществляется от универсального блока питания со следующими пределами напряжения и мощности 127 В — Ю Вт 27 В —"30 Вт 2x50 В—3 Вт 1 -7-8 В — 3 Вт 2 В — 0,6 Вт. Для удобства юстировки экспериментальной установки лазер, элементы оптической системы, фото- электронный умножитель и кювета крепятся на оптической скамье и закрываются светозащитным кожухом. [c.316]

    В последние десятилетия получили широкое распространение сцинтиляционные счетчики. Они состоят из люминес-цирующего кристалла (например, Ыа I, активированный таллием), фотоэлектронного умножителя и усилителя. Рентгеновский квант вызывает ионизацию большого чиспа атомов или ионов в кристалле, которые испускают ультрафиолетовое излучение, возвращаясь в стабильное состояние. Кванты этого излучения выбивают электроны с катода фотоумножителя, которые после ускорения попадают на электрод умно-жительной системы (динод). Каждый из электронов выбивает вторичные электроны, и после повторения этого процесса на 10-15 каскадах первоначальный импульс усиливается в Ю" -10 раз. Для регистрации достаточно усиления этих импульсов примерно в тысячу раз. Как и в случае пропорциональных счетчиков, амплитуда импульса пропорциональна энергии кванта и возможно применение хшфференциальной дискриминации (с теми же оговорками относительно статистического характера процесса). [c.24]

    Сцинтилляционный метод является одним из старейших методов обнаружения ионизирующего излучения. При помощи фотоэлектронного умножителя (ФЭУ) можно регистрировать вспышки света, вызываемые ионизирующим излучением в неорганических или органических люминофорах (сцинтилляторах). На рис. 6.3, б приведена принципиальная схема сцинтил-ляционного счетчика. Частицы или кванты, попадающие из источника излучения / на сцинтиллятор 2, вызывают световые вспышки, которые на фо-токатоде. 3 превращаются в электронные импульсы. На пути электронов, вызванных вторичной эмиссией, помещают систему параллельных электро- [c.308]

    Более совершенные приемники, такие как ФЭУ (фотоэлектронные умножители), принципиально в своей работе ничем не отличаются от работы фотоэлемента. Основное отличие заключается в том, что образовавшиеся под действием света фотоэлектроны разгоняются электрическим полем и, попадая на другой электрод, вырывают из него дополнительное число электронов, которые опять разгоняются электрическим полем, вновь попадаьэт на другой электрод, вырывают дополнительные электроны, и так повторяется многократно, пока электроны не попадут во внешнюю цепь где на нагрузочном сопротивлении Я создадут падение напряжения, Очевидно, что в случае ФЭУ общее число электронов значительно превышает число электронов, образующихся в фотоэлементе. [c.26]

    Строго говоря, использование электрохимических явлений для контроля и управления не ново. Широко применяют кондуктометрические, потенциометрические, полярографические и другие электрохимические методы контроля. Хорошо известны также рН-метры, электрохимические счетчики ампер-часов и т. п. Однако эти примеры не исчерпывают всех возможностей создания подобных приборов для обслуживания новых областей техники. В последнее время успехи в развитии теоретической электрохимии позволили создать многие интересные электрохимические преобразователи самого различного назначения датчики температуры, механических и акустических воздействий, интеграторы, управляемые сопротивления, оптические модуляторы, выпрямители и стабилизаторы микротоков, нелинейные емкости, генераторы колебаний тока и напряжения, индикаторы отказа электронных схем, умножители, дифференцирующие устройства, усилители постоянного тока и т. п. [c.496]

    Работа сцинтилляционных счетчиков основана на способности некоторых органических и неорганических соединений светиться (люмииесцировать) при облучении, и затем вспышки света преобразуются в электрические импульсы и усилива-ЮТС5 в фотоэлектронных умножителях (ФЭУ). Заряженная частица, попадая в сцинтиллятор (фосфор), возбуждает его молекулы, часть энергии которых излучается в виде фотонов. Фотоны, выходя из сцинтиллятора, вырывают из катода фотоумножителя фотоэлектроны, которые под действием электрического поля движутся к первому диноду, выбивая из него несколько вторичных электронов. Процесс повторяется на всех последующих дииодах, так как потенциал каждого выше предыдущего. В результате на аноде получается импульс, который можно зарегистрировать. [c.31]

    Совершенный прецизионный вискозиметр применен в лаборатории П. А. Ребиндера [34]. Диапазон скоростей его охватывает 10 порядков (от 7 -10 до 3,5-Ю с ). Крутильная головка обеспечивает измерения при постоянном градиенте скорости или при постоянном напряжении. Конечные интервалы, измеряемые каждым методом, перекрываются. Исследования могут производитья с через-вычайно малой скоростью внутреннего цилиндра. Высокую точность обеспечивает фиксация углов поворота с помош,ью кругового линейчатого растра со ступенчатым редуктором. Круговой растр используется также в качестве датчика угловых смеш ений внутреннего цилиндра, автоматически поддерживающего постоянство крутящего момента. Прибор снабжен фотоэлектронным умножителем с электронным усилителем и осциллографом или электронным самописцем. Специальные меры приняты для исключения вибраций. С помощью этого вискозиметра у бентонитовых суспензий были изучены область медленной ползучести (шведовская область) и переход от бингамовской текучести к ньютоновскому течению с минимальной вязкостью. [c.264]

    Детекторы (приемники) ионов помещают на выходе прибора. Для детектирования используют электрометрии, усилители, позволяющие измерять ионные токи до 10 А, электронные умножители и сцинтилляц. детекторы с фотоумножителем, к-рые обеспечивают счет отдельных ионов (ток 10 А) и имеют малую постоянную времени, а также фотопластинки, преимущество к-рых в возможности регистрации всех ионов масс-спектра и накопление сигнала. [c.661]

    Применение. Металлич. Ц.- компонент материала катодов для фотоэлементов, фотоэлектронных умножителей, телевизионных передающих электронно-лучевых трубок, термоэмиссионных электронно-оптич. пр разователей. Ц. используют в вакуумных электронных приборах (как геттер), выпрямителях, атомных ставдартах времени. Цезиевые атомные часы необыкновенно точны. Их действие основано на переходах между двумя состояниями атома Ц.- с параллельной и антипараллельной ориентацией собств. магн. моментов адра атома и валентного электрона этот переход сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Пары Ц.- рабочее теле в магнитогвдродинамич. генераторах, газовых лазерах, ионных ракетных двигателях. Радионуклид С используют дтя у-дефектоскопии, в медицине для диагностики и лечения. Ц -теплоноситель в адерных реакторах, компонент смазочных латериалов для космич. техники. [c.332]

    Развитие Э, в значит, степени обусловлено достижениями электротехники, радиотехники, микроэлектроники и компьютерной техники на базе этих отраслей разрабатывается множество методов изучения электрохим. систем. В свою очередь, Э. служит совр. приборостроению. Так, один из разделов прикладной Э.- хемотроника - связан с проблемой использования электрохим. ячеек в качестве элементов разл. электронных схем (см. Электрохимические преобразователи информации). Элжтрохим. выпрямители, усилители и стабилизаторы постоянного тока, электрохим. умножители и ин-тефаторы могут стать важным дополнением к полупроводниковым приборам в области низких частот и слабых электрич. сигналов. Электрохим. ячейки м.б. применены также для преобразования мех. воздействий в электрич. импульсы электрохимические сенсоры, датчики давления, индикаторы шумов, вибраций и др.). [c.466]


Смотреть страницы где упоминается термин Умножители электронные: [c.88]    [c.381]    [c.536]    [c.26]    [c.267]    [c.138]    [c.21]    [c.84]    [c.150]    [c.267]    [c.672]    [c.77]    [c.260]    [c.355]    [c.565]    [c.331]   
Масс-спектромерия и её применение в органической химии (1964) -- [ c.215 ]

Инструментальные методы химического анализа (1989) -- [ c.267 , c.470 ]

Электрические явления в газах и вакууме (1950) -- [ c.696 , c.697 ]

Масс-спектрометрия и её применение в органической химии (1964) -- [ c.215 ]




ПОИСК





Смотрите так же термины и статьи:

Детектирование канальными электронными умножителями

Канальные электронные умножители КЭУ

Масс-спектрометрия вторичных ионов электронный умножитель

Схема электронных умножителей

УАС-лазер электронный умножитель

Умножители

Электронные умножители и регистрирующие устройства



© 2025 chem21.info Реклама на сайте