Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия вторичных ионов электронный умножитель

    Чувствительность электронного умножителя может быть настолько высока что он используется для счета отдельных частиц, таких, как электроны [137, 139] или положительные ионы [1116]. Аллен [31] впервые применил такую систему в качестве детектора в масс-спектрометре схема расположения электродов в умножителе Аллена изображена на рис. 97. Основные требования, предъявляемые к материалу электрода, состоят в следующем возможно большее соотношение вторичных и первичных частиц работа выхода должна быть большой, материал должен иметь высокую температуру плавления, обеспечивающую возможность его обезгаживания при высоких температурах кроме того, он не должен отравляться под действием ионного пучка или атмосферы. Аллен нашел, что всем этим требованиям удовлетворяет бериллий, который характеризуется отношением вторичных электронов к протонам примерно 2,2 [2161] при низких энергиях это отношение увеличивается до 8 при высоких энергиях [30] фотоэлектрическая работа выхода составляет 3,92 эв [1302], поэтому фотоэлектроны не могут образовываться на его поверхности под действием видимого света. [c.215]


    В качестве коллектора ионов III в импульсном масс-спектрометре целесообразно использовать электронный умножитель. Обработку его следует производить так, чтобы во время напуска атмосферного воздуха не происходило значительного изменения коэффициента вторичной эмиссии. [c.216]

    Фактор 7 представляет собой средний эффективный коэффициент конверсии на первом электроде вторично-электронного умножителя, измеряемый количеством вторичных электронов, эмиттируемых на один первичный ион. Без применения подобных умножителей в настоящее время практически невозможно реализовать требования, предъявляемые к чувствительности и быстродействию масс-спектрометра. Полный коэффициент усиления умножителя может быть выражен следующим образом у = у,уэ , где у — коэффициент умножения на всех электродах, кроме первого п — число электродов. [c.35]

    Для детектирования заряженных частиц (электронов, ионов, возникающих прн ионизации) в настоящее время наиболее широко используются два метода 1) детектирование ионов при помощи масс-спектрометра или просто вторичным электронным умножителем (ВЭУ) 2) детектирование изменения импеданса (полного [c.184]

    ДЛЯ ионов любой массы, если ионы движутся с равными скоростями. В масс-спектрометре ионы приобретают скорость в результате ускорения в электрическом поле. При этом скорость иона обратно пропорциональна квадратному корню из его массы, поэтому тяжелые ионы движутся медленнее легких и выбивают меньше вторичных электронов. Обычно вносят поправку в измеряемое отношение ионных токов, пропорциональную квадратному корню из отношения масс. Бесспорно то, что подобная поправка необходима, но возникают сомнения в отношении ее точной величины. Например, отношение токов ионов лития с массой 7 и 6, измеренное на электронном умножителе, отличается от значения, измеренного обычным электрометрическим усилителем, на 10%. Это не согласуется с той поправкой (8%), которая должна вноситься на основании изложенных выше соображений. [c.102]

    Эмиссия вторичных электронов с металлической поверхности под действием падающего луча положительных ионов обсуждалась ранее, поскольку это явление лежит в основе действия детекторов-умножителей. При падении пучка ионов на металлическую поверхность с последней могут быть вырваны положительные ионы масс-спектрометр открывает благоприятную возможность для определения масс и количества таких ионов, а при наличии дополнительного источника ионизации — и нейтральных частиц, вырываемых с поверхности. Этот процесс можно рассматривать как чисто механическое столкновение между ионами и поверхностными атомами мишени. Трудность проведения успешного эксперимента состоит в получении чистой поверхности, поскольку даже при остаточном давлении адсорбируемых примесей менее 10- мм рт. ст. наблюдается фон углеводородных ионов [972]. В большинстве опубликованных работ [ 1868, 2078, 2079] описывалось выделение только одноатомных ионов с поверхности. Однако Хониг [972] обнаружил положительные и отрицательные многоатомные ионы, а также нейтральные частицы. Например, при бомбардировке поверхности германия ионами инертных газов он получил положительные частицы Ое+, Се , СеН+, СеОН", СегО" , Ыа+, [c.456]


    Вторично-электронные приборы применяются в масс-спектрометрии для очень чувствительных измерений малых ионных токов при обнаружении отдельных заряженных частиц, где точность измерения ионного тока стоит на втором плане. В этом случае коллекторный электрод масс-анализатора заменяется катодом вторично-электронного умножителя, а регистрация ионного тока осуществляется в цепи последнего электрода. Величина выходного тока зависит не только от количества частиц, падающих на катод, но и от их энергии и физической природы. Умножитель требует значительного напряжения питания, порядка 1—2 кв, и не обладает стабиль ным усилением. Кроме того, в выходном токе умножителя существует значительный уровень шумов и имеет место дрейф выходного тока. Обычно вторично-электронные умножители применяются в аналитических приборах для специальных исследований. [c.100]

    При сочетании масс-спектрометра и газового хроматографа в ходе анализа приходится иметь дело с различными быстрыми изменениями парциального давления в ионном источнике в соответствии с меняющимся профилем газохроматографического элюирования. Парциальное давление во время измерения масс-спектра должно по возможности поддерживаться постоянным во избежание помех, влияющих на интенсивности пиков и могущих привести к ошибочной интерпретации результатов измерений. Решением проблемы может быть регистрация спектра за очень короткий промежуток времени (в режиме быстрого сканирования), поскольку колебания парциального давления в шкале времени пролета ионов сравнительно невелики и не сказываются существенным образом на качестве спектра. Для быстрого сканирования, однако, необходимы быстродействующие безынерционные детектирующие устройства с высокой чувствительностью. В значительной мере этим требованиям удовлетворяют вторичные электронные умножители. Вторичный электронный умножитель выполняет функцию предусилителя. Ионы, проходящие через входную щель детектирующего устройства, попадают вначале на первый конверсионный динод, при соударении с которым каждый ион выбивает несколько вторичных электронов. Эти электроны под действием ускоряющего напряжения между динодами направляются на второй динод, из которого каждый падающий электрон вновь выбивает некоторое число вторичных электронов, и этот процесс повторяется на следующем диноде. С последнего динода на коллектор падает настоящий электронный ток, по своей мощности многократно превосходящий первоначальный ионный ток, поступающий на конверсионные диноды. Коэффициенты усиления во вторичных электронных умножителях с числом динодов от 16 до 20 достигают значений 10 —10 . Другим существенным преимуществом этого метода предварительного усиления является возможность обеспечения исключительно малых значений постоянных времени при очень низком уровне шумов. В качестве одного из недостатков можно указать на некоторую зависимость коэффициента усиления от массы ионов (дискриминация по массам).  [c.296]

    Масс-спектрометр М5-5 для регистрации малых ионных токов снабжен вторично-электронным умножителем, позволяющим измерять токи в 10 а. Палмер [1], используя М5-5, проводил анализы радиоактивных веществ высокой удельной активности с использованием весьма малых количеств. Для анализа такого элемента, как плутоний, было необходимо иметь 10 г. На этом же масс-спектрометре Палмер выполнил анализы кадмия — смесь сульфата кадмия и буры наносили на ионизирующую вольфрамовую нить для анализа в большинстве случаев было достаточно 10 г кадмия. [c.119]

    Вторичный электронный умножитель (ВЭУ) является одним из основных видов детекторов ионов в современных масс-спектрометрах. Ионы, прошедшие анализатор и имеющие энергию 1-10 кэВ, попадают на коллектор, которым является первый дииод ВЭУ. Каждый ион выбивает из первого динода один или большее число электронов. Эти электроны ускоряются разностью потенциалов между первым и вторым динодами ( 100 В) и выбивают из второго динода следующую порцию дополнительных электронов. Таким образом происходит умножение начального количества выбитых электронов на всех 10-20 ступенях умножителя и на последний динод, на каждый детектируемый ион приходится до 10 электронов. Такие умножители электронов с дискретными динодами отличаются как большйм коэффициентом усиления, так и быстродействием и сравнительно малым шумом. Динамический диапазон их достаточно велик — от 10 (что соответствует одному иону в секунду) до 10 А. Недостатком ВЭУ этого типа является старение , т.е. изменение характеристик со временем или в результате загрязнения. Другой тип ВЭУ с распределенными динодами (каналтроны) характеризуется большей стабильностью. Каналтроны прочны и устойчивы к внешним воздействиям. Максимальный ток каналтрона значительно меньше, чем у ВЭУ с дискретными динодами (= 10 А). [c.859]


    Проблема фоновых масс-спектров хорошо известна в масс-спектрометрии. Следует отметить, что такой проблемы не существует при работе с термоионным источником н детектором ионов, имеющим чувствительность 2-10 а. В этих условиях основные пики в масс-спектре фона принадлежат ионам калня и натрия. Если необходимо произвести анализ калия, то приходится до нанесения образца на нить просто хорошо прогреть ее для удаления следов веществ, определяющих фон. При применении в качестве детектора вторично-электронного умножителя проблема фона становится очень серьезной. На рис. 6 показан типичный масс-спектр, зарегистрированный при первом прогреве нити при температуре около 600° спектр содержит пики, соответствующие каждой массе, большей 12 интенсивность пиков составляет 10 а. Этот масс-спектр принадлежит следам углеводородов, которые содержатся, но-вндимому, на самой нити. При нагревании нити до 2000° в течение нескольких часов фон может быть значительно снижен. Иногда сам анализируемый образец содержит примеси такого же типа, как и вещества, создающие фон в этом случае меры по удалению фона следует проводить осторожно, чтобы при очистке нити не испарить образец. Предварительное нагревание нити в вакууме несколько ускоряет операцию очистки, но полностью не устраняет фон. Вероятно, это объясняется конденсацией паров масла из форвакуумного насоса на нити, которая происходит после того, как нить вставлена в источник. Кроме углеводородного фона, в приборе наблюдается более устойчивьш фон, обусловленный примесями в самом материале нити. Мы уже упоминали о натрии и калии. При нагревании вольфрамовой нити до 2200° обычно появляются ионы W, W0, Мо, Ва, а также сложные ионы вида К , Кд,. ..,К . На рис, 7 и 8 показаны масс-спектры изотопов [c.102]

    Детектор ионов, который представлял собой или коллектор типа цплршдра Фарадея, или вторично-электронный умножитель, присоединяли к анализатору также при помощи золотого уплотнения. Умножитель был изготовлен из дпнодов фотоумножителя типа Dumont 6291 . Для этого динодная система была извлечена из стеклянной колбы фотоумножителя и смонтирована так, чтобы она могла быть встроена в масс-спектрометр. Оказалось необходимым обеспечить магнитную экранировку умножителя. Она была достигнута окружением умножителя цилиндром из мягкого железа толщиной 6 мж и, кроме того, помещением между магнитом и умножителем двух листов мягкого железа. Умножитель [c.391]

    Для проведения анализа металлов и полупроводников был изготовлен времяпролетный масс-спектрометр с лазерным ионным источником. В качестве масс-спектрометра был использован серийный прибор типа МХ-1303. Испарение и ионизация атомов анализируемого вещества осуществлялось ОКГ, работающим в режиме с модуляцией добротности резонатора. Регистрация масс-спектра осуществлялась вторичным электронным умножителем, осциллографом С1-29. Работа прибора проверялась при анализе спектральных эталонов стали, и было установлено, что чувствительность прибора к данной примеси постоянна. Аналитические характеристики установки оказались следующими нижний предел обнаружения примесей около 5.10 %, воспроизводимость определения не превышагт 10%, разрешающая способность на уровне 10% составляет 180, информационная способность 10 бит. Рис. 6, библ. 4 назв. [c.236]

    Другие проблемы, возникающие при использовании электронных умножителей, связаны с тем, что коэффициент усиления для различных видов ионов неодинаков вследствие того, что эффективность эмиссии вторичных электронов из первого динода зависит от массы, заряда, электронной конфигурации и энергии ионов. Халл (1969) использовал общепринятое предположение, что коэффициент усиления обратно пропорционален квадратному корню из массы падающих частиц. Однако следует отметить, что при высоких напряжениях, которые используются для ускорения ионов в масс-спектрометрах с искровым источником ионов, эмиссия вторичных ионов нелинейно зависит от перечисленных факторов, причем в основном эти зависимости недостаточно хорошо изучены (Каминский, 1965 Гоффект и др., 1966). По-видимому, сканирование масс-спектра или переключение пиков (см. ниже) путем измерения магнит- [c.145]

    Предложена аналогичная методика определения ионов на статических масс-спектрометрах [102]. Схема применяемого устройства приведена на рис. 12. Если во времяпролетном приборе область дрейфа начинается сразу после выхода ионов из источника, то в описываемом случае область дрейфа — участок от магнита анализатора до коллектора. Когда на отклоняющие пластины 2 не подается потенциал, электронный умножитель 3 регистрирует полный ионный ток = klN - - АаЛ" , когда же на пластины подано отклоняющее ионы напряжение (1—2 кв), регистрируется ток 1д = /саЛ . Здесь ж к — коэффициенты усиления вторичного электронного умножителя для и N° соответственно. Дело в том, что в области дрейфа 1 ионы и нейтральные частицы обладают одной и той же энергией, но на первый динод умножителя ионы попадают со значительно меньшей энергией (потенциал первого динода —3 кв), поэтому и к могут быть существенно различными кх к ). Для определения отношения kJk2 используется достаточно хорошо известное время жизни ионов ЗРё-При определении одновременно с исследуемым соединением в источник напускается ЗРе как репер и измеряются / и 1о для пика ЗРб и изучаемого пика ионов. Стандарт т (ЗРё) = 68 мксек [103] позволяет вычислить сначала к к для ионов ЗРё (г = 4 мксек), а затем интересуемое время жизни т (Х ) но уравнению [c.32]

    Определение газовых включений в твердых телах может быть произведено на масс-спектрометре после плавления образцов в вакууме. Предел обнаружения примесей при этом ограничивается фоном газов, которые выделяются из деталей устройства при плавлении образца [1]. Для выделения микропримесей газообразующих веществ из непрово-л,ящих материалов особой чистоты нами использовалась специальная камера из нержавеющей стали, в которой образец прогревался при давлении 10 мм рт. ст. излучением молекулярного лазера ЛГ-25 на СОг мощностью около 30 Вт. Ввод излучения в камеру осуществлялся через германиевое окно. Образец массой 0,1—1 г помещался па массивной медной подставке, обеспечивающей отвод тепла из зоны нагрева. Смена образцов производилась через крышку камеры с вакуумным уплотнением. Перед анализом образец выдерживался в вакуумирован-ной камере в течение 1—2 часов. Затем образец облучается до полного расплавления или сублимирования, что устанавливается при визуальном наблюдении за поведением образца через специальное окно в стенке камеры. Время облучения 20—30 секунд. Выделившиеся газы через диафрагму направляются в ионный источник масс-спектрометра МХ1304. Величина объема напуска составляет 500 см , что обеспечивает постоянство давлений компонентов исследуемых смесей в камере ионизации во время записи масс-спектра, которое обычно не превышает 20 минут. Масс-спектр регистрируется с помощью канало-вого вторично-электронного умножителя ВЭУ-6 с максимальным коэффициентом усиления 10 . [c.55]


Смотреть страницы где упоминается термин Масс-спектрометрия вторичных ионов электронный умножитель: [c.361]    [c.925]    [c.777]    [c.778]    [c.67]    [c.181]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.361 ]




ПОИСК





Смотрите так же термины и статьи:

Вторичные электроны

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия вторичных ионов

Масс-спектрометрия масс-спектрометры

Умножители

Умножители электронные

Электрон масса



© 2024 chem21.info Реклама на сайте