Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тантал температура плавления

    Еще большую жаропрочность детали из тантало-воль-фрамового сплава приобретают, если на них нанесен слой карбида тантала (температура плавления этого покрытия — свыше 4000° С). При опытных запусках ракет такие сопла выдерживали колоссальные температуры, при которых сам сплав быстро корродирует и разрушается. [c.175]

    Радиусы атомов ниобия и тантала, а также радиусы их ионов (Э ") очень близки из-за лантаноидного сжатия. Это объясняет большое сходство их физико-химических свойств. В свободном состоянии ванадий, ниобий и тантал весьма стойки к химическим воздействиям и обладают высокими температурами плавления. Эти металлы вместе с хромом, молибденом, вольфрамом, рением, а также рутением, родием, осмием и иридием (см. ниже) относятся к тугоплавким металлам. Тугоплавкими условно считают те металлы, температура плавления которых выше, чем хрома (1890°С). Тугоплавкие металлы и их сплавы играют большую роль в современной технике. [c.286]


    Подгруппа ванадия (V, N5, Та). Ванадий, ниобий и тантал имеют только одну устойчивую кристаллическую фазу с ОЦК структурой. Свойства жидких ванадия, ниобия и тантала мало изучены. Приведенные в табл. 17 данные показывают, что эти жидкости по своему строению и свойствам, видимо, во многом подобны простым жидкостям подгруппы титана. При плавлении концентрация электронов проводимости почти не меняется, потому что электропроводность остается почти такой же, как в твердой фазе. Концентрация обобществленных электронов Б жидкой фазе должна быть несколько выше, чем у металлов подгруппы титана, так как атомы имеют пять валентных электронов. Соответственно сказанному ранее, температуры плавления и кипения, а также энтропии испарения металлов подгруппы ванадия больше чем у металлов подгруппы титана. Энтропии плавления имеют величины, обычно наблюдаемые при плавлении кристаллов с ОЦК структурой. [c.192]

    В земной коре ниобия содержится 0,002, а тантала 0,0002% (масс.). Оба элемента во многом сходны с ванадием. В свободном состоянии они представляют собой тугоплавкие металлы, твердые, но не хрупкие, хорошо поддающиеся механической обработке. Плотность ниобия 8,57 г/см , тантала 16,6 г/см температуры плавления соответственно 2500°С и 3000 °С. [c.509]

    V, N5, Та — важные материалы современной техники Сплавы на основе этих металлов обладают высокими антикоррозионными свойствами, механической проч ностью, высокими температурами плавления Они широко используются в реактивной и космической технике, при создании атомных реакторов, являются перспективными материалами в химическом машиностроении Сверхпроводящие сплавы, катализаторы, радиоэлектроника, медицинская техника — дополнительные области применения элементов группы УВ Уникальной особенностью обладает чистый тантал, который не раздражает живую ткань и поэтому используется в костной хирургии Соединения ванадия ядовиты Один из растительных концентратов этого металла — ядовитый гриб бледная поганка В то же время известна роль ванадия как одного из катализаторов биохимических реакций Он от носится к микроэлементам, необходимым для всех живых организмов Внесение V в соответствующих дозах в почву приводит к лучшему усвоению растениями азота, увеличению содержания хлорофилла в листьях, лучшему накоплению биомассы в целом Биологическая роль ниобия и тантала не обнаружена [c.468]


    В свободном состоянии ванадий, ниобий и тантал весьма стойки к химическим воздействиям и обладают высокими температурами плавления. Эти металлы, вместе с хромом, молибденом, вольфрамом, рением, а также рутением, родием, осмием и иридием, относятся к тугоплавким металлам. [c.508]

    Продолжающееся повышение требований к чистоте металлов и расширение производства таких тугоплавких металлов, как ниобий, тантал, молибден, вольфрам, и др., и сплавов на их основе показали, что вакуумные дуговые и электро-шлаковые печи не могут полностью удовлетворить эти потребности, в основном из-за того, что в них нельзя получить существенный перегрев металла жидкой ванны над температурой плавления и выдержать ванну при этой температуре в течение времени, нужного для глубокой очистки металла от примесей и газов. Кроме того, особенности рабочего процесса вакуумной дуговой печи не позволяют полностью использовать обычные средства металлургии, такие, как легирование, применение раскисли-телей, флюсов и т. п. Поэтому последние 10—15 лет во всех крупных промышленных странах ведутся работы по созданию плавильных агрегатов, свободных от указанных недостатков. Одним из таких новых типов плавильных установок являются электронные печи. [c.234]

    Еш,е более термостойкие карбиды образуют ниобий, гафний и тантал (температура плавления 3500 3890 и 3880 °С соответственно). [c.155]

    Согласно диаграмме состояния ниобий—тантал температура плавления сплавов этой системы изменяется почти линейно. В результате рентгенографических и металлографических исследований установлено, что двойные сплавы ниобия с танталом при всех концентрациях однофазные и никаких превращений в них не наблюдается [8, 9]. [c.179]

    Физические свойства. Свойства ванадия, ниобия и тантала ставят их в число весьма важных промышленных металлов. Для них характерны высокие температуры плавления, относительно небольшие плотности (V, Nb), а также хорошие механические свойства (табл. 13). [c.91]

    Температуры плавления и кипения галидов ниобия и тантала [c.95]

    Высокая температура плавления и большая сопротивляемость механическим воздействиям сделали тантал пригодным для изготовления радиоаппаратуры, усилительных и генераторных ламп большой мощности, фильтровальных конусов, выпрямителей переменного тока, кислотоупорных и твердых сплавов, специальных сортов сталей, хирургических, зубоврачебных и режущих инструментов и деталей вечных ручек. Тантал используется в производстве искусственного шелка изготовленные из него фильеры и други(5 детали обходятся дешевле, чем из других металлов, и имеют более продолжительный срок службы. [c.308]

    Карбид тантала ТаС образуется прокаливанием смеси Та О с углеродом при 1250° С. ТаС представляет собой черное твердое кристаллическое вещество с плотностью 13,96 и температурой плавления 4100° С. Он не растворяется в кислотах. [c.317]

    Особенно большое значение за последнее время приобрели нитриды тяжелых металлов d-элементов. Они обладают большой твердостью, высокими температурами плавления, термостойкостью и относительной химической устойчивостью. Например, нитрид ванадия VN плавится при 2300° С, нитрид циркония ZrN — при 2980° С, нитрид тантала TaN — при 3087° С и др. Нитрид титана — вещество золотистого цвета — применяется как сверхтвердый материал для технических целей. [c.521]

    Как отмечено выше, ванадий, ниобий и тантал изоструктурны (ОЦК-решетка) и имеют близкие значения атомных радиусов. Все это в сочетании со сравнимыми величинами ионизационных потенциалов и температур плавления предопределяет возможность полной взаимной растворимости этих металлов как в жидком, так и в твердом состоянии. Действительно, ванадий, ниобий и тантал в любых комбинациях образуют друг с другом непрерывные твердые растворы, что отмечается также в системах, образованных этими элементами с изоструктурными (ОЦК) полиморфными модификация- [c.309]

    Тантал. Тантал — редкий металл. Он тугоплавок (температура плавления 2850 С), легко окисляется в пламени горелки (окись тантала—порошок белого цвета). Спаи тантала со стеклом изучены еще плохо. В настоящее время получают вакуумноплотный спай тантала со стеклом П-15. [c.142]

    Основные трудности, возникающие при выплавке танталовых сплавов, связаны с большой реакционной способностью тантала и его высокой температурой плавления (около 3000° С), а также с большой разностью температур плавления тантала и легирующих элементов и высокой летучестью некоторых из них. Вследствие этого возникла необходимость выплавки 12 [c.12]

    Другой причиной, препятствующей определению р и а двойных сплавов на основе железа, является высокая химическая активность ряда элементов. Нет пока материалов, которые могли бы контактировать, не взаимодействуя, с жидким титаном, цирконием, ванадием и рядом лантанидов. Изучение р и сг двойных систем на основе железа во всем концентрационном интервале также ограничено высокой температурой плавления одного из компонентов (бор, гафний, ниобий, тантал, молибден, вольфрам, рений, рутений, родий, осмий, иридий). [c.39]


    Соединения тугоплавких металлов наряду с высокой температурой плавления и твердостью обладают коррозионной устойчивостью во многих агрессивных средах. В качестве коррози-онно-устойчивых материалов и покрытий используются соединения титана, тантала, ниобия, а также карбиды, силициды, бориды и нитриды. Карбид титана устойчив в концентрированной соляной кислоте, а карбиды бора и кремния отличаются высокой коррозионной устойчивостью во многих средах. [c.185]

    Тантал чрезвычайно устойчив к хлору и к кислотам азотной, соляной, серной и фосфорной при температуре до 250° С. Тантал не взаимодействует с 98%-ной серной кислотой при температуре до 150° С. При температуре 175 С скорость коррозии достигает 0,0025 мм, а при 200 С — 0,038 мм в год. Тантал обладает хорошими физико-механическими свойствами температура плавления 3000° С плотность 16600 кг/м коэффициент линейного расширения 6,58-Ю" удельная теплоемкость 0,036 кал/(г-°С). При работе при температуре свыше 300° С тантал становится хрупким, что ограничивает его применение. Тантал также не применим для растворов плавиковой кислоты и горячих крепких щелоков. [c.358]

    Карбиды ниобия и тантала обладают высокой твердостью и очень высокой температурой плавления (Nb — 3500°, ТаС — 3880°). Вместе с карбидами вольфрама и титана они входят в состав некоторых марок сверхтвердых сплавов. Изотоп Nb находит применение при исследовании технологических процессов. [c.61]

    Электроника, электротехника. Ниобий и тантал обладают ценным сочетанием свойств, необходимых для изготовления Электровакуумной аппаратуры высокой температурой плавления, высокой эмиссионной способностью и способностью поглощать газы при Повышенной температуре (геттерные свойства). Из ниобия и тантала изготовляют нагреваемые детали — аноды, сетки, катоды и другие детали в электронных лампах. [c.61]

    Та, ЫЬ, Т1, Ш и Мо. Из этого следует, что довольно трудно найти материалы, в которых можно было проводить работы с жидким плутонием. Однако указанные металлы можно использовать в контакте с плутонием в течение сравнительно длительного времени при температурах, близких к температуре плавления плутония, так как скорости диффузии плутония в металлах и самих металлов а плутонии довольно небольшие. Наиболее устойчивы к плутонию вольфрам и тантал. [c.27]

    Однако это условие не может считаться достаточным для объяснения накопленных фактов. Например, металлы с sp-валентными электронами (РЬ, Sn и др.) не дают таких структур, какие характерны для переходных металлов. Затем, несмотря на то, что радиус, например, Та в объемно-центрированной кубической решетке достаточно велик по сравнению с радиусом атома С, чтобы последний мог войти в пустоты решетки тантала, углерод почти не растворяется в объемно-центрированной решетке тантала. Очевидно, устойчивость подобных веществ определяется более сложно, а не просто отношением радиусов атомов. Среди карбидов, нитридов, гидридов есть не только твердые растворы, но и химические соединения переменного состава. Например, по результатам работ Б. Ф. Ормонта и сотрудников тот же углерод с танталом образует различные химические соединения переменного состава. Одно из таких соединений имеет область гомогенности при составе, изменяющемся от ТаСо за до ТаС о,во- Решетка этой Р-фазы отлична от индивидуальных решеток углерода и тантала и представляет собой гексагональную решетку, состоящую из атомов Та, октаэдрические пустоты которой статистически заняты атомами С. Другая, так называемая -f-фаза, представляет собой химическое соединение изменяющегося состава в пределах области гомогенности от Ta o jg до ТаС. Кристаллическая решетка в этом случае состоит из атомов Та с элементарной ячейкой гранецентрированного куба, в октаэдрических пустотах которой находятся атомы С. Когда эти пустоты заполняются полностью атомами С, то решетка превращается в решетку типа Na l (ТаС). Такую же решетку имеет монокарбид титана Ti . В ней может изменяться состав в пределах области гомогенности до Ti g в-Твердость, температура плавления, термодинамические свойства, плотность, периоды решетки и другие свойства этих важнейших жаростойких материалов зависят от состава фаз и изменяются с изменением числа атомов С в решетке. [c.144]

    Гафний в промышленности используется пока еще мало. Представляет интерес его применение в регулирующих и защитных устройствах атомных реакторов благодаря высокому сечению захвата тепловых нейтронов. Перспективно применение соединений и сплавов гафния в производстве высокотемпературных и жаропрочных материалов. Например, температура плавления карбида гафния 3890°С сплав ниобия и тантала, содержащий 2—10% гафния и 8—10% вольфрама, прочен даже при 2000 °С, [c.132]

    Тантал (температура плавления 3000°С, плотность 16,6 г/см ) обладает самой устойчивой пассивностью среди известных металлов. Он сохраняет пассивность в кипящих кислотах (например, НС1, HNOg или H2SO4), влажном хлоре или растворах Fe lg при температурах выше комнатной. Такая коррозионная стойкость свидетельствует о том, что Фладе-потенциал металла отрицательнее потенциала водородного электрода в этом растворе и что присутствие ионов С1" не влияет на низкую плотность тока в пассивном состоянии. Благодаря высокой стойкости в кислотах тантал в особых случаях применяют в химической промышленности (например, при изготовлении перегонных аппаратов для [c.382]

    Порошкообразные катодные осадки некоторых металлов, например вольфрама, молибдена, циркония, ванадия и тантала, получают электролиаом расплавленных солей при температурах ниже температур плавления соответствующих металлов. [c.321]

    Ниобий и тантал нашли широкое применение благодаря таким практически ценным свойствам, как высокая температура плавления, значительная коррозионная стойкость, механическая прочность, малый коэффициент термического расширения. Эти металлы идут на изготовление быстрорежущих и корроэион-ностойких сталей. Ниобий используют также в радиотехнике, производстве рентгеновской и радиолокационной аппаратуры. [c.505]

    Тантал — пластичный металл, способный вытягиваться в тончайшую проволоку. Благодаря высокой температуре плавления (3000°) и стойкости против коррозии, играет большую роль в современной технике. Химически очень устойчив. Не окисляется на воздухе. На тантал не действуют ни НС1, ни H2SO4, ни крепкие щелочи, ни даже царская водка при комнатной температуре. Поэтому он особенно пригоден для изготовления ответственных частей заводской химической аппаратуры. Тантал служит заменой платины при изготовлении электродов, а также хирургических и зубоврачебных инструментов. Сплав Nb + Та используется как надежное антикоррозионное покрытие. [c.491]

    Ванадий, ниобий и тантал составляют VB группу периодической системы. В невозбужденном состоянии электронные группировки внешних энергетических уровней атомов этих элементов несколько отличаются друг от друга, а именно у атомов ванадия —3d4s , ниобия—4d 5s и тантала —5d 6s . Таким образом, в невозбужденном состоянии электронными аналогами являются только ванадий и тантал. В возбужденном состоянии, когда один из s-электро-нов ванадия и тантала переходит на другой подуровень, и все пять электронов внешних уровней становятся непарными, т. е. валентными, все три элемента являются электронными аналогами. Наличие на внешних электронных уровнях атомов только d- и s-электронов характеризует эти элементы как металлы. По внешнему виду это серые блестящие металлы с высокими температурами плавления и кипения, не изменяющиеся в воздухе. [c.238]

    Бориды обладают высокими температурами плавления, значительной твердостью, химической устойчивостью, жаропрочностью и жаростойкостью. Бориды металлов хрома, циркония, титана, ниобия, тантала (например, ТагВ, ТаВ, 13384, ТаВа) и др. стали применять для изготовления деталей реактивных двигателей, лопаток газовых турбин и т. п. [c.174]

    Ниобий—металл, менее ковкий, чем тантал, серо-стального цвета с твердостью чистого железа. Благодаря достаточной ковкости и тягучести он годится для прокатывания в тонкие листы, изготовления проволоки и цельнотянутых труб. В отличие от тантала металлический ниобий при температурах плавления и кипения в вакууме сильно распыляется. Обладает парамагнитными свойствами. При высокой температуре в атмосфере инертного газа ниобий сваривается. Металл, поглотивший некоторое количество газа, делается хрупким. Особенно сильно он поглощает газы в порошкообразном состоянии. Удельная теплоемкость ниобия 0,071 кал1град-г в интервале 20—100° С. [c.305]

    Сверхтвердые сплавы состоят из карбидов и силицидов вольфрама, хрома, титана, тантала. Сцементированные кобальтом, никелем или железом, они обладают твердостью, приближающейся к твердости алмаза (9,6 по шкале Мооса) и в особенности карбосилицид титана. Такие сплавы имеют чрезвычайно высокую температуру плавления (например, температура плавления сплава тантала с карбидом гафния 3950° С) и при нагревании твердость их не снижается. [c.353]

    Обезвоживание осадков гидроксидов Э205- сН20 ниобия и тантала нагреванием сопровождается (при потере последней гидратной воды) сильным раскаливанием массы, обусловленным значительным выделением тепла при переходе оксида из аморфного в кристаллическое состояние (теплота кристаллизации). Температуры плавления ЫЬгОз и ТааОз лежат соответственно при 1490 и 1870 С. [c.290]

    Судя по высоким температурам плавления низших оксидов ванадия (1500— 2000°С), структуры этих соединений являются координационными с преобладающим ковалентным вкладом, в то время как в сравнительно легкоплавком У2О5 (670° С) заметно снижена степень полимеризации структуры. В противоположность этому высшие оксиды ниобия и тантала — очень тугоплавкие вещества. [c.428]

    Температура атода зависит от температуры плавления материала и испарения его в вакууме. Так, катод из тантала ( t a = = 3000°) может работать при 2500° катод из молибдена (/ л = = 2625°) —при 2000° и т. д. [c.257]

    Соединения с относительно большим содержанием теллура получаются в описанных условиях гомогенными (иногда после 2 нед нагревания). Для получения гомогенных фаз, обедненных теллуром, после нагревания при 800—1000 °С негомогенное вещество вынимают из кварцевой ампулы и в потоке выоокочистого аргона помещают в закрытый крышкой тигель из тантала, молибдена или борида титана и доводят температуру до 1400—1800°С, лучше в индукционной печи. Температуры плавления фаз можно определить по соответствующим диаграммам состояния [1]. Для малых количеств веществ рекомендуется второе нагревание проводить в маленькой танталовой трубочке, сплющенной с концов и нагреваемой электрическим током. [c.1192]


Смотреть страницы где упоминается термин Тантал температура плавления: [c.524]    [c.490]    [c.303]    [c.509]    [c.65]    [c.208]    [c.39]    [c.85]    [c.85]    [c.152]    [c.356]   
Экспериментальные методы в неорганической химии (1965) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Тантал

Температура плавления

Температура плавления ниобия и тантала

Температура плавления хлоридов тантала



© 2024 chem21.info Реклама на сайте