Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фиг кварцевого стекла от температуры

    ЗАВИСИМОСТЬ УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ и КОЭФФИЦИЕНТОВ ТЕПЛОПРОВОДНОСТИ КВАРЦЕВОГО СТЕКЛА ОТ ТЕМПЕРАТУРЫ [c.331]

    Плавление кремнезема начинается при температуре около 1720° С, однако при этой температуре расплав обладает большой вязкостью и поэтому при получении кварцевого стекла температура расплава поддерживается в пределах 1810—1850° С. При дальнейшем перегреве расплава начинается интенсивное испарение кремнезема, так как температура кипения его около 2100° С. При продолжительном нагреве свыше 1200° С стекло самопроизвольно расстекловывается , т. е. переходит в одну из кристаллических модификаций кварца, что сопровождается изменением объема. Степень кристаллизации зависит как от температуры, так и от наличия газовых включений и содержания примесей. [c.185]


    Сублимация — испарение твердых тел — происходит в результате того, что некоторые атомы с поверхности кристалла отрываются от своих соседей и уносятся Б окружающее пространство. Для подавляющей части минералов этот процесс при нормальной температуре практически равен нулю, только символически мож.чо говорить о давлении насыщенного пара 8102, находящегося в равновесии с любой из твердых модификаций кремнезема. Однако при получении кварцевого стекла температура выше 1500 °С приводит к значительным потерям шихты в результате испарения ЗЮг. Из природных минералов, вероятно, только лед при температурах ниже нуля испаряется в заметных количествах, все остальные твердые минералы при стандартных условиях (Т—25°С р= =760 мм рт. ст.) практически не сублимируют. [c.75]

    ЗАВИСИМОСТЬ ВЯЗКОСТИ КВАРЦЕВОГО СТЕКЛА ОТ ТЕМПЕРАТУРЫ [c.331]

    Приборы, требующие максимальной термостойкости, готовят из кварцевого стекла, температура размягчения которого 1400° С. При такой термостойкости оно обладает очень высокой устойчивостью к изменению температуры, так как имеет очень малый коэффициент расширения (6-10 см/° С). В отличие от обычного кварцевое стекло прозрачно для ультрафиолетовых лучей. Поэтому, когда реакции проводят под воздействием ультрафиолетового облучении, отдельные части прибора готовят из кварцевого стекла. [c.6]

    Сопоставляя эффективные заряды для образцов кремнезема 4—6 в табл. 4, нетрудно заметить, что при сравнительно невысокой плотности нейтронного потока 6,2-10 нейтрон/см аморфный кремнезем, по-видимому, частично кристаллизуется. В то же время при плотности потока 2,2-10 ° нейтрон/см кристаллизация кварцевого стекла исключается, очевидно благодаря совпадению уровня электронной энергии твердого вещества в исходном состоянии и после облучения нейтронами. В первом же случае поглощение кварцевым стеклом нейтронов связано, как видно, с притоком энергии, достаточным для разрыва связей 51 — О, но слишком малым, чтобы помешать кристаллизации. Это можно сравнивать с нагреванием при температуре ниже температуры размягчения стекла (плотность потока 6,2 10 нейтрон/см ) и выше этой температуры (плотность потока 2,2-10 нейтрон/см ). Таким образом, поглощение радиации может вызывать в зависимости от ее интенсивности и аморфизацию и, наоборот, кристаллизацию, т. е. понижение уровня электронной энергии, повышение ионности связей. [c.140]

    Тонкостенную посуду и изделия из обычного химического стекла можно нагревать только до температуры кипения воды и не на голом огне газовой горелки, избегая резких изменений темцературы. Наиболее термостойко кварцевое стекло — в изделиях из кварца можио проводить реакции в условиях прокаливания. [c.23]


    ЗАВИСИМОСТЬ ЭЛЕКТРИЧЕСКОЙ ПРОЧНОСТИ КВАРЦЕВОГО СТЕКЛА ОТ ТЕМПЕРАТУРЫ [c.331]

    Дистиллированную воду, применяемую в лаборатории, обычно получают перегонкой водопроводной воды в металлическом перегонном аппарате. Часто бывает необходимо использовать дважды перегнанную воду (бидистиллят). Повторную перегонку производят в приборе, изготовленном из кварцевого стекла (рис. 6). Перегонкой можно также разделять жидкости, если они сильно отличаются по температуре кипения, соот- [c.21]

    При высоких температурах Si восстанавливает многие оксиды до металлов. Но даже при высоких температурах Si не подвергается воздействию водорода, азота, диоксида углерода. Карборунд хорошо сопротивляется воздействию расплавленного кварцевого стекла до 1900 °С. [c.19]

    Кварцевое стекло. Расплав кремнезема легко переохлаждается с образованием кварцевого стекла. При температуре ниже 1000 °С кварцевое стекло практически не кристаллизуется и в метастабильном состоянии может существовать неопределенно долго. [c.37]

    Сырьем для изготовления непрозрачного кварцевого стекла служат специально обогащенные кварцевые пески или крупка жильного кварца с содержанием ЗЮг не менее 99,8%. Блок непрозрачного кварцевого стекла наплавляется из песка в электрической печи сопротивления вокруг графитового стержня, нагреваемого электрическим током до температуры 1800—2000 °С. Затем из наплавленного блока горячим формованием — раздувкой сжатым воздухом в формах изделия формуют. [c.39]

    Влияет на спекание и скорость повышения температуры. Как показал Гегузин, это обусловлено тем, что при более медленном повышении температуры происходит постепенное исчерпывание дефектов кристаллической решетки. Вот почему вклад этих дефектов в ускорение спекания снижается. С увеличением скорости нагрева значительная часть дефектов сохраняется до высоких температур и интенсифицирует процесс спекания. Эффект ускорения спекания при увеличении скорости нагрева проявляется не только на кристаллических порошках, но и при спекании кварцевого стекла. [c.210]

    Кварцевое стекло можно подвергать действию более высоких температур, чем обычное, оно пропускает ультрафиолетовые лучи, которые обычное стекло задерживает. Очень ценным качеством кварцевого стекла является то, что коэффициент его термического расширения весьма мал. Это значит, что при нагревании или охлаждении объем кварцевого стекла почти не изменяется. Поэтому сделанные из него предметы можно сильно накалить и затем опустить в холодную воду они не растрескиваются. [c.643]

    Стекло с большим процентным содержанием кварца имеет незначительный коэффициент расширения (5 10 ) и поэтому не лопается даже при резких изменениях температур. Такое стекло называется кварцевым стеклом. Кварцевое стекло имеет большие преимущества перед обыкновенным стеклом, а именно оно растворимо значительно меньше обыкновенного стекла, его можно нагревать до 1200° С, оно обладает способностью пропускать ультрафиолетовые лучи и т. д. Такое стекло применяют для изготовления химических приборов и посуды. [c.492]

    Для быстрого подъема температуры применяют инфракрасные отражательные печи, в которых источником теплоты служит вольфрамовая нить, помещенная в вакуумную трубку из кварцевого стекла (рис. 4). Эта трубка помещается в одной фокусной точке позолоченного эллипсоидного зеркала, а в другой фокусной точке собираются лучи от инфракрасной лампы. В этой же точке помещается исследуемый образец, температура которого контролируется термопарой, связанной с программным регулятором подъема температуры. [c.11]

    Наиболее важным преимуществом кварцевого стекла перед обычным является примерно в 15 раз меньший (и почти не изменяющийся с температурой) коэффициент термического расширения. Благодаря этому кварцевое стекло выдерживает резкую смену температур. [c.120]

    Таким образом, даже сравнительно небольшое изменение температуры вызывает изменение порядка выпадения различных кристаллических модификаций кремнезема. Это имеет большое значение для производства огнеупорных изделий, в частности динаса. Если температура обжига будет выше 1600° С, то в качестве первой промежуточной фазы может появиться даже кварцевое стекло, из которого далее будет получаться сначала тридимит, а потом кристобалит. [c.179]

    На поверхность кварцевого стекла нанесена пленка металлического хрома. Возможны ли твердофазные химические превращения в этой системе в интервале температур 25+800 °С (Возможность образования силикатов и силицидов хрома, а также твердых растворов не рассматривать.) [c.24]

    Одно и то же твердое вещество в зависимости от условий синтеза может получаться в разных энергетических состояниях, каждому из которых соответствует своя структура. Твердое вещество может иметь в высшей степени большое число энергетических состояний. Поскольку межатомные расстояния и углы между связями могут изменяться в довольно широких пределах, в таких же пределах происходит изменение энергии связи и, следовательно, энергетического состояния вещества, которое зависит от энергии валентных электронов. Но изменение межатомных расстояний и угла между связями только для двух соседних атомов, находящихся в структуре твердого тела, влечет за собой некоторое изменение всех длин и углов связей, вообще некоторое изменение взаимного положения всех атомов данного твердого тела, и, следовательно, имеет своим конечным результатом образование видоизмененной структуры соответствующего вещества. Таким образом, существует в высшей степени большое количество вариантов структуры твердого вещества данного состава. В процессе кристаллизации обычно можно получить только довольно ограниченное число модификаций, отвечающих в данных условиях наиболее бедным энергией состоянием данного вещества. Отвердевание атомных соединений, ведущее к образованию аморфного вещества, в зависимости от условий, в которых оно протекает, позволяет получать то одни, то другие непериодические структуры. Очевидно, существует огромное количество аморфных твердых тел одинакового состава, но разного строения. Это обстоятельство обычно ускользает из поля зрения исследователей. Но более точное изучение строения различных стеклообразных веществ (таких как кварцевое стекло, халькоге-нидные стекла или органическое стекло), а также гелей показало, что несмотря на один и тот же состав отдельные образцы подобных веществ, полученные ири различных условиях, имеют различную структуру. Так, различна структура стекол, полученных при различных температурах и давлениях гели одного и того же состава часто имеют неодинаковую пористую структуру, например неодинаковое распределение по объему геля микро- и макропор ири постоянном соотношении объемов последних. Вообще, варьируя давление и температуру, можно получать твердые вещества одного и того же состава, но различной плотности и, следовательно, различного строения. Кварцевое стекло, полученное иод высоким давлением, приближается по плотности к кварцу. Насколько далеко может заходить ири этом превращение вещества, видно из факта получения таких совершенно непохожих друг на друга модификаций кремнезема, как кварц, тридимит, кристобалит, а также стешовит. Расчеты показывают, что при определенных высоких [c.156]


    Тугоплавкие карбонильные металлические покрытия могут быть получены на разработанной нами установке (рис. 87). В случае применения подложек не стержневой, а сложной формы процесс осуществляется в реакторе, где источником нагрева образца служат токи высокой частоты. Индуктор генератора может помещаться внутрь аппарата, тогда последний изготавливается из металла. Реактор, помещаемый внутрь индуктора, обычно делают из кварцевого стекла. Температура измеряется оптическим пирометром ОПИР-09 и через смотровое окно [244, 246]. [c.214]

    Кварц. Во многих случаях вместо стеклянной посуды приме-някт посуду из плавленого кварца. Она чрезвычайно устойчива к резким изменениям температуры кварц плавится при высокой температуре (около 1700°С). Едкие щелочи и даже карбонаты щелочных металлов разрушают кварцевое стекло, кислоты же на него не действуют (кроме HF и отчасти Н3РО4). [c.45]

    Если оценивать реакции предгорения по повышению давления перед воспламенением, то оказывается, что степень повышения давления увеличивается при более высокой начальной температуре топлива и уменьшается нри большей сопротивляемости детонации, однако эффект, вызываемый внесением тетраэтилсвинца или изооктана, будет различным [110]. При наблюдениях за холодным пламенем через кварцевое стекло было установлено, что в период повышения давления пламя фосфоресцирует. [c.408]

    Мембраны. Практически идеальным для селективного извлечения гелия из обедненных газов представляется использование кварцевого стекла (в виде капилляров), пропускающего при высокой (673 К) температуре гелий [Лне = 3,26-10 моль-м/(м - с- Па)] и непроницаемого для метана и азота 1Лсн4, N2 6,38  [c.323]

    Кварцевое стекло. Кварцевое стекло получают в технике путем плавления при высоких температурах наиболее чистых природных разновидностей кристаллического кварца, главным образом горного хрусталя, жильного кварца или кварцевых иесков с содержанием 98—99 Уо 510г, [c.370]

    Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов (например, ионов натрия). Проводимость быстро увеличивается с ростом температуры. Диэлектрическая постоянная стекла зависит от природы модификатора. Например, введение оксида свинца в стекло повышает это значение с 4 до 10. Большое влияние на эксплуатационную долговечность оказывает термостойкость стекол. Термостойкость определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлажцениЕ в воде (0°С). Для большинства видов стекол термостойкость колеблется от 90 до 170 0, а для кварцевого стекла она составляет 800-1000°С. [c.14]

    Учитывая все существующие требования к продуктам разделения природных газов, практически идеальным для селективного извлечения гелия из обедненных газов оказывается использование кварцевого стекла [39] с проницаемостью по гелию при температуре 673 К 3,26-10моль м/(м с Па). Это позволяет получать из газа, содержащего, % по объему. 0,05 Не, 85 метана, 14,95 азота, практически чистый (99,99 % по объему) Не при перепаде давления на мембранах 7,0 МПа. Основным недостатком, затрудняющим внедрение процесса в промышленном масштабе, является трудность изготовления аппаратуры с кварцевыми волокнами. Кроме того, несмотря на огромную селективность по гелию, удельная производительность аппарата с кварцевыми капиллярами чрезвычайно мала. [c.173]

    МЕХАНИЧПСКАЯ ПРОЧНОСТЬ КВАРЦЕВОГО СТЕКЛА ПРИ РАЗЛИЧНОЙ ТЕМПЕРАТУРЕ [c.331]

    При анализе веществ, содержащих небольшое количество кислорода, таких, как нефтепродукты, многие факторы, которыми мояно пренебречь в случае анализа веществ с большим содержанием кислорода, вносят значительные ошибки в результаты анализа. Так, незначительные примеси кислорода в газе - носителе, продукты взаимодействия кварцевого стекла и сажи при высокой температуре, примеси, содержащиеся в саже, и т.п. значительно повышают результаты анализа. [c.110]

    Кварцевая посуда. Излелия из кварцевого стекла обладают очень большой термической устойчивостью. Это объясняется ничтожной величиной коэффициента теплового расширения кварца. Кварцевая стеклянная посуда, нагретая до 800°, легко выдерживает внезапное охлаждение при погружении в холодную воду. Кварцевую посуду можно также нагревать до температуры ISOO . Однако при длительном нагревании при 1100—1200 кварцевое стекло постепенно расстекловывается, т. е. принимает кристаллическую структуру, и становится негодным к употреблению. [c.132]

    При 1470 °С а-тридимит переходит в а-кристобалит. Область устойчивости а-кристобалита — 1470—1728 °С. При охлаждении он переходит в р-кристобалит (тоже неустойчивая форма, но может сохраняться неопределенно долго при обычных условиях). Состояния, отмеченные на диаграмме пунктиром,— неустойчивы. При 1728 X а-кристобалит плавится, но при 1800 °С и до 2000 °С расплав еще остается очень вязким. Кремнеземистый расплав легко переохлаждается в кремнеземистое (кварцевое) стекло. При нагревании до температуры выше 1000 °С оно расстекловывается с выделением метастабильного кристобалита. [c.33]

    При кристаллизации кварцевого стекла в качестве первичного продукта кристаллизации также выделяется метакристобалит. Только в присутствии минерализаторов с повышением температуры (но ниже 1470 °С) метакристобалит переходит в устойчивый а-тридимит. [c.41]

    Кварцевое стекло представляет собой переплавленный чистый кремнезем с незначительными (около 0,01 %) добавками AI2O3, СаО и MgO. Оно отличается высокой термостойкостью и инертностью ко многим химическим реактивам за исключением плавиковой и фосфорной кислот. Прозрачное кварцевое стекло хорошо пропускает ультрафиолетовые лучи. Широкое внедрение кварцевого стекла в практику ограничивается трудоемкостью и энергоемкостью его изготовления и обработки. Кварцевое стекло, имея высокую температуру плавления (более 2000°С), начинает размягчаться только после 1650°С. Большая вязкость расплава в значительной степени усложняет удаление из него растворенных газов. [c.40]

    ЦИРКОН — минерал, ортосиликат циркония ZrSiOi. В качестве примесей содержит гафний, иттрий, церий, торий, уран. Основное сырье для получения циркония, Применяют в производстве огнеупорных материалов, добавляют к кварцевому стеклу, из которого изготовляют жаропрочную и кислотоупорную лабораторную посуду. Ц. используют как химически инертное вещество в приборах, работающих при высоких температурах и в химически активных средах. Прозрачные красные и коричневые кристаллы Ц. (гиацинт) используют в ювелирном деле. [c.285]

    В зависимости от назначения химическая посуда изготавливается из тонкого Снагрев и охлаждение) или толстого (механическая прочность, работа под вакуумом) стекла различных сортов. Чаще всего используется химически устойчивое стекло марки ХУ или термостойкое стекло (ТУ), выдерживающее перепад температур до 200 °С, с температурой размягчения до 500-600 °С. При работе в высокотемпературном режиме применяют кварцевое стекло с температурой размягчения выше 1400 °С. Обычные типы фарфоровой посуды не используются при температуре выше 100 °С. [c.27]

    Кварцевое стекло содержит не менее 99% SiOi и обладает многими свойствами, которые не характерны для стекол другого состава. Оно отличается высокой тугоплавкостью температура его размягчения 1300° С. При высоких температурах пропускает газы. [c.119]

    Кроме четырех основных модификаций кремнезема, на диаграмме представлены три новые модификации, располагающиеся внутри областей существования Р-кварца. Все эти модификации неустойчивы и могут быть получены только путем быстрого охлаждения жидкого расплава или высокотемпературных модификаций. Так, из а-кристобалита или из жидкого расплава можно получить Р-кристобалит. Тридимит в аналогичных условиях образует две неустойчивые модификации р-тридимити у-тридимит. Получаются они при охлаждении а-тридимита, а также при переходе от кварцевого стекла или а-кристобалита. В обычном динасе при низких температурах мы всегда наблюдаем р-тридимит, тогда как при нагревании в динасе возникает в основном а-тридимит. [c.178]


Смотреть страницы где упоминается термин фиг кварцевого стекла от температуры: [c.91]    [c.26]    [c.371]    [c.371]    [c.371]    [c.371]    [c.43]    [c.33]    [c.146]    [c.478]    [c.51]   
Физическая химия силикатов (1962) -- [ c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Кварцевое стекло



© 2025 chem21.info Реклама на сайте