Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия изменение при образовании связи

    Так как для разрыва химических связей в исходных веществах потребуется затратить определенную энергию, а при образовании связей в молекулах продуктов реакции она будет выделяться, то протекание химической реакции будет сопровождаться изменением энер- [c.205]

    В соответствии с изменением типа химической связи и структуры в свойствах бинарных соединений проявляется более или менее отчетливо выраженная периодичность. Об этом, например, свидетельствует характер изменения по периодам и группам стандартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования в зависимости от порядкового номера элемента с положительной степенью окисления (рис. 130), В изменении параметров отчетливо проявляется также вторичная периодичность (рис. 131). [c.247]


    По методу молекулярных орбиталей рассмотрите образование связи в частицах N2° и N2, укажите изменение порядка, энергии и длины связи при переходе от N2 к Nj". [c.85]

    Еще более широкие возможности открывает варьирование состава минералов в силу их исключительного многообразия. Кварц и силикаты, слагающие подавляющее большинство-пород, содержат в основном связи Si—О и связи катион — кислород атомы алюминия могут быть катионами или заменять Si. Эти связи играют различную роль при разрушении силикатных минералов разных структурных типов [275]. В кварце и каркасных силикатах (полевых шпатах) обязательно рвутся силоксановые связи в цепочечных и ленточных си-ликатах возможно скольжение и разрыв по определенным плоскостям, образованным только связями Ме—О в островных силикатах связи Si—О—Si отсутствуют. Перечисленные связи различаются по геометрическим параметрам (длина, валентные углы), распределению электронной плотности и энергии связи колебания этих величин для отдельных классов силикатов имеют более узкие пределы, [276]. Важно, что во всем диапазоне изменений полярности связей Si—О они остаются существенно ковалентными, несмотря на большую разницу [c.93]

    Сопоставление энергии локализации с экспериментально определенными величинами свободной энергии активации АР, энтальпии активации АЯ (или с отличающейся от нее на энергией активации Е) и энтропии активации Д5 приводит к выводу, что для данного класса реакций энергия локализации оказывается мерой относительной реакционной способности различных атомов в данной молекуле или одинаковых атомов в различных молекулах. При этом необходимо, чтобы, во-первых, для всех подобных реакций в процессе образования активированного комплекса энергии изменения а-связей в молекуле были одинаковыми и, во-вторых, чтобы энтропии активации были постоянны или пропорциональны изменениям энергии я-связей. В настоящее время доступно довольно мало расчетных данных, относящихся к энергиям локализации. [c.201]

    Изменение энергии при образовании связи принимают за среднее значение полной энергии Е двух взаимодействующих ядер и их электронов. Вероятностный характер волновой функции не позволяет некоторые величины определять точно (принцип неопределенности). Поэтому полную, кинетическую и потенциальную энергии связи рассматривают лишь как средне величины. [c.82]


    X13,6 = —27,2 эВ, a изменение энергии при образовании молекулы На — энергия связи составляет 4,5 эВ (см. стр. 150). Подобное соот ношение характерно и для других молекул оно обусловлено тем, что образование связи сравнительно мало влияет на движение электронов вблизи ядер атомо , где взаимодействие электронов и ядер велико. Во-вторых, изменение электронных облаков при образовании связи учитывается выбором с помощью вариационного метода определенных значений коэффициентов с. [c.185]

    При реакции образования иодистого водорода система состоит из молекул водорода, иода и иодистого водорода, а также из взаимодействия между ними, заключающегося в разрыве, образовании или изменении химических связей и сопутствующих зтим процессам изменений энергии, в данном случае - поглощения тепла. [c.62]

    Как указано выше, молекула в невозбужденном состоянии имеет минимальную энергию. В невозбужденной молекуле ядра атомов совершают колебания относительно равновесного положения Го. Кривая энергии молекулы характеризует сумму энергетических изменений, которые происходят с уменьшением расстояния между ядрами прн образовании молекулы. За вычетом появляющейся при сближении атомов, небольшой нулевой энергии ео колебаний ядер около положения равновесия изменение энергии системы представляет сумму изменений полной энергии электронов и потенциальной энергии взаимодействия ядер. Эта сумма Ео для равновесного расстояния Го отличается от энергии образования связи св на величину ео. [c.75]

    Составьте энергетические диаграммы образования связи по методу молекулярных орбиталей для частиц N0+, NO и N0 . Укажите характер изменения порядка, энергии и длины связи в ряду этих частиц. Имеется ли изоэлектронность между [c.91]

    Для решения вопроса о том, растворяется ли данное вещество в определенном растворителе, можно провести термодинамическую оценку. При постоянных температуре и давлении решающим будет изменение свободной энергии Гиббса AG = AH— —TAS, которое учитывает как изменение энтальпии (разрыв и образование связей), так и энтропийные факторы (изменение степени упорядоченности). [c.370]

    При взаимодействии мягких анионов (например, Вг", 1 , N ) с типично мягкими катионами (например, d2+, Hg +, Pd +) термодинамические соотношения становятся совсем другими. Распад сравнительно рыхлой гидратной оболочки вокруг ионов не требует больших затрат энергии наоборот, образование ковалентных связей сопровождается значительным выделением энергии, поэтому ДЖО. Изменение энтропии, напротив, невелико. Увеличение энтропии в результате отщепления гидратной воды почти полностью компенсируется уменьшением количества частиц в системе при образовании комплекса катион — анион. [c.402]

    Устойчивость комплексного соединения (в твердом состоянии) определяется изменением свободной энергии при образовании его из аддендов и простой солн. Однако, давая характеристику устойчивости комплексных соединений, часто ссылаются на теплоту их образования последняя величина связана с изменением свободной энергии посредством уравнения  [c.357]

    Рассмотренные кривые энергии для молекул показывают сумму энергетических изменений, которые происходят в атомах при уменьшении расстояния между ядрами. За вычетом появляющейся при сближении атомов небольшой по величине нулевой энергии колебаний ядер (см.ниже) изменение энергии системы представляет сумму изменений полной энергии электронов и потенциальной энергии взаимодействия ядер. Эту сумму для равновесного расстояния Гц мы будем здесь и далее обозначать она отличается от энергии образования связи 3 на величину нулевой энергии колебаний ядер около положения [c.150]

    Атом водорода — устойчивая система. Поэтому вопрос об образовании иона На сводится к анализу изменения энергии системы при сближении протона с атомом водорода. Прежде всего надо рассмотреть, как изменяется при этом потенциальная энергия. Изменение потенциальной энергии связано с возникновением электростатического притяжения приближающегося протона к электрону атома Н и электростатического отталкивания между протонами. Это изменение потенциальной энергии равно  [c.55]

    Чтобы представить механизм реакции, необходимо знать в первую очередь строение реагирующих молекул на всем пути протекания реакции. Следует также знать природу взаимодействия (образование связей) между атомами, влияние среды, энергию системы на всех стадиях и скорость, с которой во время реакции происходят различные изменения. Зная механизм химического превращения, можно научиться получать необходимые вещества кратчайшим путем. [c.177]


    Согласно этой теории, при образовании молекул происходит изменение формы и энергии атомных орбиталей. Вместо неравноценных, например 5- и р-орбиталей, образуются равноценные гибридные орбитали, имеющие одинаковую энергию и форму, т. е. происходит гибридизация (смешение) атомных орбита-лей. При образовании химических связей с участием гибридных орбиталей выделяется больше энергии, чем при образовании связей с участием отдельных 5- и р-орбиталей, поэтому гибридизация атомных орбиталей приводит к большему понижению энергии системы и соответственно повышению устойчивости молекулы. На рис. 11.8 представлена форма гибридной орбитали, возникающей при комбинации атомных 5- и р-орбиталей. [c.43]

    В связи с тем, что расчеты энтропий гибких молекул полимеров в растворах приводятся методами статистической термодинамики, эти вопросы обычно рассматриваются отдельно. На примере атермальных растворов видно, что одного только отсутствия изменения энергии при образовании раствора еще недостаточно, чтобы раствор оказался идеальным. [c.102]

    Впервые понятие о гибридизации было введено для объяснения структуры молекул органических веществ. Как было показано, в молекулах ненасыщенных углеводородов возможна р- и р -г ибри-дизация, а для насыщенных — р -гибридизация. За счет этого происходит значительный выигрыш в энергии при образовании связи вследствие более полного перекрывания гибридных орбиталей орбиталями соседних атомов. При переходе от исходных к гибридным орбиталям полнота перекрывания заметно увеличивается в последовательности 5р < р <8р. Это проявляется в соответствующем упрочнении связи и в изменении ее длины (табл. 4). [c.59]

    В настоящее время теория в состоянии дать только самую грубую оценку изменения энергии, сопровождающего образование связи. Даже определение энергии предварительного разделения спаренных электронов представляет известные трудности, так как любой полученный при этом электрон может иметь спин, ориентированный в произвольном направлении (потому что неспаренный электрон не должен делить свое орбитальное квантовое состояние с другим электроном, и, таким образом, его спин не ограничивается принципом Паули). Следовательно, оказываются возможными различные спиновые комбинации неспаренных электронов. Хотя в наших расчетах мы обычно пренебрегаем энергией, обусловленной спином электрона, она все же оказывается достаточной для того, чтобы вызвать значительные различия между энергиями некоторых из этих состояний с различными комбинациями спинов. А так как точно не известно, какая их комбинация должна быть использована при образовании связи, энергия разделения спаренных электронов остается под некоторым сомнениел . Однако энергия разделения спаренных электронов у углерода была определена Ван Флеком [25], как он полагает, с точностью од 10% и оказалась равной приблизительно 7 электрон-вольтам, [c.265]

    Способность атомов лдсорбата при образовании связи с атомом адсорбента отдавать или принимать электроны (иначе говоря, способность поляризоваться), называемая электроотрицательностью, относится к числу важных факторов, характеризующих адсорбцию. Экспериментально установлена линейная зависимость между электроотрицательностью адсорбата и результирующим изменением работы выхода электрона. Энергия связи физически адсорбированных частиц зависит от их размеров чем больше частица, тем, как правило, выше энергия связи [209]. [c.183]

    В соответствии с изменением типа химической связи и струн туры в свойствах бинарных соединений проявляется более и. и менее отчетливо выраженная периодичность. Об этом, наприме ), свидетельствует характер изменения по периодам и группам ет и1 дартной энтропии, температуры плавления, энтальпии и энергии Гиббса образования однотипных соединений (рис. 104). В изме [c.197]

    Сущность химической реакции заключается в следующем перераспределяются атомы и ионы или происходит превращение этих час тиц перестраивается химическая связь (образование, разрыв и изменение химической связи) при этом часто происходит перерас пределение электронов изменяется энергия (изменяется энергосо держание отдельных веществ). [c.61]

    Может возникнуть вопрос, насколько правомерно составлять волновую функцию электрона, находящегося в молекуле, из волновых функций электронов в свободных атомах. Такое приближение не является слишком грубым по двум причинам. Во-первых, состояние электронов в молекулах не очень сильно отличается от их состояния в атомах, об этом свидетельствует сравнительно небольшое изменение энергии электронов при образовании химической связи. Так, полная энергия электронов для двух свободных атомов водорода равна —2-13,6 =—27,2 эВ, а изменение энергии при образовании молекулы Нг (энергия связи) составляет 4,5 эВ. Подобное соотношение характерно и для других молекул. Оно обусловлено тем, что образование связи сравнительнс мало влияет на движение электронов вблизи ядер атомов, где взаимодействие электронов и ядер велико. Во-вторых, изменение электронных облаков при переходе от атомов к молекуле в некоторой мере учитывается выбором с помощью вариационного метода определенных значений коэффициентов с. [c.100]

    Квантовомеханическое исследование процесса взаимодействия молекулы гзза с поверхностью кристалла показывает, что в зависимости от вида молекулы и кристаллической решетки такое взаимодействие может быть различным как по характеру образующейся связи и прочности ее, так и по изменению свойств молекулы в адсорбированном состоянии. В образовании связи могут принимать участие электроны или дырки кристаллической решетки ( 55). Связь может образоваться не только за счет имевшихся свободных валентностей поверхностных атомов, но и за счет валентностей, возникаюш,их при взаимодействии поверхностных атомов с молекулой газа. В хемосорбированном состоянии молекула может вновь оказаться в валентно насыщенном состоянии или перейти в состояние радикала или в ионо-радикальную форму. Во многих случаях за время пребывания молекулы в хемосорбированном состоянии может изменяться характер связи ее с поверхностью кристалла, состояние ее и энергия связи. Для полупроводниковых адсорбентов введение донорных или акцепторных примесей, вызывая изменение в соотношении энергетических уровней электронов в кристалле, может влиять ыа характер хемосорбционных процессов. Подобное же влияние могут оказывать и различные структурные дефекты поверхности. [c.371]

    Известно [14], что скорость образования окиси этилена нелинейно зависит от степени покрытия поверхности кислородом и имеет резкий максимум при степени покрытия 0,5—0,6. Такой характер скорости обусловлен, по-видимому, структурным превра-щеппем поверхности металла и связанным с этим изменением типа связи металла с кислородом. Это происходит в результате взаимодействия кислорода как с поверхностью катализатора, так и с его приповерхностными слоями. Кислород, внедряясь в приповерхностные слои серебра, оказывает, очевидно, модифицирующее действие, подобное модифицирующему действию других электроотрицательных элементов [15]. Аналогия между глубоко адсорбированным кислородом и электроотрицательными промоторами и характер изменения активности и избирательности катализатора прп введении промоторов позволяют предположить, что эффект повышения селективности окисления этилена в нестационарном циклическом режиме обусловлен понижением энергий активации стадий, определяющих скорость окисления этилена по маршрутам полного и парциального окисления, причем более сильным понижением по последнему. Нестационарные условия позволяют, очевидно, провести процесс при более высоких концентрациях реакционного кислорода, благодаря чему и достигается более высокая избирательность. Пока нельзя исключить, что экстремум избирательности при величине периода 30 с связан с динамическими свойствами реактора и не обусловлен динамическим свойством поверхности катализатора. [c.35]

    Теория активированного комплекса. Эта теория основана на предположении, что в ходе взаимодействия начальная конфигурация частиц реагентов переходит в конечную в результате непрерывного изменения межатомных расстояний. Продукты реакции могут получаться лишь при условии образования промежуточной конфигурации, называемой переходным состоянием или активированным комплексом. (Понятие о нем ввели Эйринг и Поляни в 1935 г.). Эта конфигурация состоит из атомов реагентов, но в ней старые связи еще не целиком разрушились, а новые не успели полностью образоваться. Ее образование связано с затратой энергии эта затрата и есть энергия активации. Необходимость предварительных энергетических затрат при сближе- [c.125]

    Энтальпийный и энтропийный факторы и направление процесса. Из уравнения ДС == АИ — TAS следует, что знак изменения энергии Гиббса и направление процесса определяются стремлением частиц объединиться в более сложные (агрегация), что уменьшает энтальпию, и стремлением частиц, наоборот, разъединиться (дезагрегация), что увеличивает энтропию. Повышение температуры в системе, с одной стороны, препятствует силам межатомного и межмолекулярного притяжения, которые способствуют упорядочению системы, с другой стороны, усиливает хаотичность движения. При очень высоких температурах, как правило, значение TAS становится значительно больше АН и тогда значение и знак AG определяются членом TAS. Следовательно, при очень высоких температурах энтропийный фактор (т. е. стремление частиц к разъединению) доминирует над энтальпий-ным (стремлением частиц к образованию связей). Поэтому для осуществления процессов ассоциации молекул и синтеза различных веществ обычно нужен низкотемпературный режим, а реакции разложения, как правило, протекают при достаточно высоких температурах. Следовательно, знак AG и направление процесса определяются конкуренцией энтальпийного АН и энтропийного TAS факторов. Суммарный эффект этих противоположных тенденций в процессах, идущих при Т = onst и р = onst, отражает изменение энергии Гиббса. [c.245]

    Так как линии рентгеновской флуоресценции возникают вследствие переходов электронов в наиболее глубоких внутренних электронных слоях, энергия химической связи в общем слишком мала для того, чтобы изменить состояние электронов этих слоев. Напротив, в случае легких элементов в образовании связи участвуют электроны ЛI-oбoлoчки. В этом случае могут проявляться заметные смещения длин волн, например, для элемента и его окисла. Для А1/Ср-линий это различие составляет ДЯ = 0,02 А. Наряду с изменением длины волны изменяется и относительная интенсивность линий. Длины волн линий алюминия изменяются также в зависимости от его координационного числа по отношению к кислороду. Этим способом можно было бы. например, определить координационные числа алюминия в полевых шпатах и других алюмосиликатах. [c.217]

    Периодическое смещение электронов, участвующих в образовании связи, является причиной периодического изменения геометрии молекулы. Другими словами, появляется связь между колебательным движением электронов и ядер, т. е. движение электронов модулируется. Изменение положения атомов и атомных групп вызывает колебательное движение атомов и молекул. Энергия, расходующаяся на возбуждение этих колебаний, представляется падающим излучением. Поэтому наряду с линиями релеевского рассеяния Vst = vo наблкадают слабые парные линии npH Vo "vr. Разность волновых чисел Av = Vo — (vo Vr) соответствует волновым чис- ь-лам Vj определенных колебаний. Совокупность таких линий составляет спектр комбинационного рассеяния ра-ман-спектр). Наряду со стоксовыми линиями, характеризующимися более низкими волновыми числами (vq — Vp), в спектре комбинационного рассеяния появляются чрезвычайно слабые антистоксовы (-7о+ v ) линии, смещенные в коротковолновую область. Они возникают в том случае, если энергия колебательно-возбужденной молекулы суммируется с энергией первичного излучения (рис. 5.12,а). [c.221]

    Чтобы еще ближе подойти к сущности катализа, рассмотрим вопрос о характере неполновалентного взаимодействия между реагентами и катализаторами. Если пользоваться языком мульти-плетной теории, это взаимодействие должно быть таким, которое обеспечивает приблизительное равенство джз/2, выражающее соответствие между энергиями (д) временных связей индексной группы с катализатором в промежуточном комплексе и суммой энергий (5) исходных связей реагентов и вновь образующихся связей в продуктах реакции. При <С5/2 связь в промежуточном соединении окажется столь слабой, что не повлияет на изменение исходных связей реагента, тогда как ири 5/2 произойдет образование прочного соединения реагента с катализатором и для регенерации катализатора потребуется дополнительная энергия активации. [c.136]

    Оценочные значения констант равновесия реакций, протекающих между газообразными органическими веществами, удобно получать по АС° образования внутримолекуляр Лых связей различного типа. В основу расчета можно положить допущение, что стандартное изменение энергии Гиббса при образовании соединения обусловлено природой и числом атомных связей в его молекуле, т. е. приписать каждому типу связи определенное значение энергии образования Гиббса. Значение А0° реакции рассчитывают затем по ДС°бр реагирующих веществ. В таблицах приводятся обычно значения ДО°бр связей и многочлены, характеризующие их зависимость от температуры. Тогда ДО др соединения в этом случае вычисляют как сумму энергий образования связей. Например, ДО бр бутана, имеющего структурную формулу Н Н Н Н [c.383]

    Тепловой эффект реакции зависит от затрат энергии на разрыв связей в молекулах рёагентов и от энергии, выделяющейся при образовании связей в молекулах продуктов. При постоянном давлении и температуре энергетический расчет проводят по изменениям энтальпии АЯ. Например, при взаимодействии хлора с метаном  [c.131]


Смотреть страницы где упоминается термин Энергия изменение при образовании связи: [c.20]    [c.120]    [c.439]    [c.459]    [c.53]    [c.137]    [c.20]    [c.102]    [c.25]    [c.230]    [c.100]    [c.149]    [c.107]    [c.213]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.74 , c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Характер. изменения орбитальных энергий валентных электронов при образовании химической связи

Энергия образования

Энергия связи



© 2025 chem21.info Реклама на сайте