Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол латексы

Рис. XII.26. Технологическая схема производства полистирола эмульсионным способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — насос дозировочный 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со сжатым азотом 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для растворения щелочей 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — фильтр масляный п — вентилятор 18 — конденсационный горшок 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник водной фазы 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы. Рис. XII.26. <a href="/info/66466">Технологическая схема производства</a> <a href="/info/311590">полистирола эмульсионным</a> способом. 2 — эмульгатор 2 — сборник для эмульсии 3 — <a href="/info/13896">насос дозировочный</a> 4 — подогреватель эмульсии 5 — полимеризатор 6 — баллон со <a href="/info/390414">сжатым азотом</a> 7 — сборник для гидроперекиси 8 — сборник для стирола 9, 11 — весовые мерники ю — аппарат для варки эмульгатора 12 — емкость для <a href="/info/153497">растворения щелочей</a> 13 — весы для щелочи И — коагулятор 15 — сборник для латекса 16 — <a href="/info/135780">фильтр масляный</a> п — вентилятор 18 — <a href="/info/94255">конденсационный горшок</a> 19 — калорифер 20 — весы для сульфита натрия 21 — емкость для растворения сульфита 23 — весовой мерник для раствора сульфита 23 — сборник для эмульгатора 24 — сборник <a href="/info/1899027">водной фазы</a> 25 — сборник обессоленной воды 26 — центрифуга 27 — норий 28 —сушилка полистирола 29, 30 — фильтры 31 — циклон 32 — шнек 33 — бункер для полистирола 34 — автоматические весы.

    Уравнение Рэлея применимо для частиц, размер которых составляет не более 0,1 длины световой волны, т. е. для частиц н больше 40—70 нм. Для частиц большего размера /р изм.еняется обратно пропорционально не четвертый, а меньшей степени К. Это, конечно, способствует увеличению светорассеяния. Геллер детально исследовал зависимость показателя степени при к от размера ча стиц в основном на примере монодисперсных латексов полистирола, размер частиц которых определялся методом электронной микроскопии. В своих работах (1946 г.) Геллер дал калибровочную кривую в координатах радиуса частиц и показателя степени при X. [c.35]

    В каком случае и во сколько раз интенсивность светорассеяния латекса полистирола больше при освещении светом с = 530-10- м или с Ха = 680-10- ж  [c.43]

    Рассчитать средний радиус частиц гидрозоля латекса полистирола, пользуясь данными, полученными с помощью нефелометра высота освещенной части стандартного золя Лх = 8-10-3 ж, средний радиус частиц = = 88-10-9 высота освещенной части неизвестного золя [c.43]

    Метил-метакрилат Алкильные смолы Латексы Полистирол [c.282]

    Для препарирования пигментов применяют пластификаторы (диоктилфталат, дибутилфталат), промежуточные продукты синтеза полимеров (латексы и др.), смолы. Так, для окраски поливинилхлорида, полиэфирных и эпоксидных смол пигменты препарируют дибутил- и диоктилфталатами, для других пластических масс — полиэтилена, полипропилена, полистирола — низкомолекулярным полипропиленом (молекулярная масса менее 10 000). После сушки такие препарированные пигменты содержат 20—40% чистого пигмента. Выпускаются также пигменты в жидком виде — дисперсии. Так, водоэмульсионные краски получают диспергированием пщ ментов в водной среде в присутствии диспергаторов и специальных смол. Такие краски можно разбавлять водой, т, е. они не требуют масел и других органических растворителей. [c.262]

    Далее рассчитывают диаметр частиц латекса и число частиц латекса п в определенном объеме реакционной среды (100 мл). Объем 1 г твердого вещества равен У=102 А/р (где рп —плотность для полистирола р = 1,071). Тогда [c.25]

    Эмульсия полистирола (латекс люстрекс).........286 [c.154]

    Полимеризация проводится в атмосфере азота. Готовый латекс, содержащий 0,5—1,0% стирола, собирается в сборник 15, откуда передается на коагуляцию в коагулятор 14, включаемый в систему. Латекс нагревается в коагуляторе до 120°, давление в коагуляторе поднимается до 2,7 ат, что обеспечивает наиболее полное отделение полистирола. Осаждение длится [c.811]

Рис. 20. Зависимость логарифма фактора устойчивости от логарифма концентрации электролита для золей иодида серебра [91] (кривые / и 2) и латекса полистирола [93] (кривая 3) в присутствии нитратов Рис. 20. <a href="/info/301103">Зависимость логарифма</a> <a href="/info/4021">фактора устойчивости</a> от логарифма концентрации электролита для <a href="/info/73563">золей иодида серебра</a> [91] (кривые / и 2) и латекса полистирола [93] (кривая 3) в присутствии нитратов

    Р нс. 25. Суспензия латекса полистирола в части снимка видно два слоя частиц (увелич. 7000 раз). [c.69]

    В концентрированном золе AgJ, содержащем vq = 4-10 частиц в 1 муг при радиусе частиц г = 30 Mfi, время коагуляции Tss 1/2000 сек. в золе AgJ нормальной концентрации, обычно применяемом для определения коагуляции, значение Т изменяется от 1 сек. до 1 мин. Прейс использовала измерения Т при коагуляции латекса полистирола электролитами для количественной характеристики агрегативной устойчивости золя. [c.151]

    На измерении амплитуды сигнала свободной индукции основаны методы определения общего содержания водорода в углеводородах, наполнителя в полиамидных сополимерах (в том числе, эластомеров, полиэтилена), полиэтилена в полипропилене, полибутадиена в полистироле, мономеров в поливинилацетате и полибутадиене, пластификатора в пленках поливинилхлорида, твердого вещества в латексах. По амплитуде сигнала эхо устанавливают степень полимеризации метилметакрилата, твердый остаток в водных отходах, влаго-содержание катализаторов, масло в восках. Релаксационные измерения используют для определения скорости полимеризации стирола, вязкости масла и др. [c.264]

    Бутадиен-нитрильные латексы обладают высокой маслобензостойкостью, что обеспечивает им широкое применение в ряде отраслей народного хозяйства в производстве искусственной кожи, нетканых материалов, ударопрочного полистирола, маслостойкой пенорезины, маслобензостойких перчаток, для пропитки и проклейки бумаги и др. [c.268]

    Эмульсионный способ полимеризации стирола имеет преимущества по сравнению с другими методами 1) его продуктом является синтетический латекс, который находит в промышленности непосредственное применение (что исключает стадию выделения полимера) 2) реакция радикальной полимеризации стирола протекает с высокой скоростью при относительно низких температурах 273—323 К 3) получаемый полистирол имеет наиболее высокую молекулярную массу 4) использование воды как дисперсионной среды устраняет проблему подбора растворителя и уменьшает пожароопасность процесса и др. [c.142]

    Перекиси используют также для получения привитых полимеров (графтполимеров). Так, при обработке латекса натурального каучука стиролом или метилметакрилатом под действием редокс-системы (например, трет-бутилгидроперекиси и тетра-этиленпентамина) при 20—25°С образуется продукт, представляющий собой привитый к каучуку полистирол (или полиме-тилметакрилат). [c.451]

    Однако, как было показано В. Г. Эпштейном с сотрудниками, при смешении полистирола с бутадиен-стирольным каучуком на стадии латекса эффект усиления не зависит от температуры совмещения, причем такие смеси не удается полностью разделить фракционированием В случае наполненных резин увеличение прочности происходит до содержания полистирола 100 вес. ч. ыа 100 вес. ч. каучука, в то время как при отсутствии наполнителей прочность повышается лишь до содержания его в смеси 30 вес. ч. [c.39]

    Радиорезистентность мышей повышает и блокада ре-тикулоэндотелиальной системы с помощью частиц угля, полистирола, латекса или гликогена. Частицы вводили внутривенно за 24 ч до общего летального рентгеновского облучения [Mori et al., 1975 Kumagai et al., 1982]. [c.37]

    Приготовление латекса полистирола. Латекс полистирола интересный и удобный объект для некоторых практических работ по кадлоидной химии. Готовят его водноэмульсионной полимеризацией стирола в присутствии надсернокислого натрия как инициатора с добавкой олеата натрия в качестве стабилизатора. [c.167]

    В рубашке полимеризаторов циркулирует вода или другой теплоноситель, поддерживающий постоянную температуру в процессе полимеризации стирола. Для отвода избытка тепла латекс при помощи поршневых ласосов 4 подается из полимеризаторов в выносные теплообменники 5 и поступает обратно в реакторы. Для осаждения полистирола латекс из последнего реактора непрерывно поступает в коагулятор 6, в который также непрерывно подается определенное количество раствора коагулянта и воды для разбавле- [c.105]

    Концентрацию вируса можно определить по соотношению числа палочек ВТМ к числу шариков из полистирольиого латекса (диаметр шари1 а равен 260 пм). [c.39]

    Введение различных примесей в раствор способствует изменению толщины ГС, а в некоторых случаях и их образованию [428]. А. И. Русанов и соавт. [498] проследили зависимость протяженности ГС на кварце от состава смеси полярной и неполярной жидкости и нашли, что максимальной толщине отвечает мольная доля полярного компонента, приближающаяся к единице. Введение электролита в воду также может влиять на структуру ГС. Это направление исследований представляет значительный интерес, поскольку затрагивает фундаментальный вопрос о влиянии гидратации ионов на структурирование воды. Так, сильное влияние иона МОз на коагуляцию положительно заряженных латексов полистирола было объяснено его слабой гидратацией [499]. Г. Пешель и П. Белоушек [479] приводят ряд 1 >Вг->С1 , в котором усиливается разрушающее влияние аниона. Согласно этим же авторам [479, 500], обнаруженная экстремальная зависимость структурной составляющей раскли- [c.172]


    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Технологический процесс производства эмульсионного полистирола по периодической схеме состоит из следующих стадий очистка стирола, полимеризация стирола, коагуляция латекса, промыка, фильтрование, сушка и просев полимера. [c.16]

    О используют для расчета радиуса г частицы латекса по формуле (IV. 5). При расчете функции Я принимают, что показатель преломления дисперсионной среды (воды) По= 1,333, а частиц полистирола П] = == 1,593. Длину волны в данной среде находят как к = квзк/по- [c.116]

    В реальных процессах флокуляции полиэлектролитами, вероятно, возможны оба механизма в случае высокомолекулярных слабозаряженных полимеров превалирует мостичное связывание, тогда как для сильно заряженных полиэлектролитов с не очень высокой массой большую роль играет электрический фактор дестабилизации. Об этом свидетельствуют результаты ультрамикроскопических исследований кинетики флокуляции золей Agi, F eO(OH) и латекса полистирола противоположно заряженными полиэлектролитами .  [c.343]

    В последние годы начали разрабатываться мастики на основе битумов, модифицированных различными полимерами, в качестве которых используют каучуки, латексы, низкомолекулярный полистирол, полиэтилен и полипропилен, КОРС (кубовый остаток ректификации стирола), полупродукты получения дивинила, стирола, каучуков, полипропилена. Возможно также использование в качестве модификатора мономера ФА. [c.36]

    Физико-механические свойства вулканизатов, полученных совмещением полибутадиена с полистиролом на вальцах и на стадии латекса, зависят от характера поперечных связей, возникающих при структурировании. Серный и перекисные вулканизаты смесей обладают более высокими прочностными свойствами, чем смеси сополимеров бутадиена и стирола с каучуком. При радиационной вулканизации, наоборот, большей прочностью обладают смег с сополимерами. [c.39]

    Г. в. между неполярными атомными группами (углеводородными, гало гену глеродными и т.п.), входящими в состав большинства орг. молекул, определяет особые св-ва их водных р-ров, в т. ч. способность к мицеллообразованию и солюбилизацию (резкое повышение р-римости неполярных в-в типа масел в мицеллярных р-рах). Взаимод. между неполярными группами, входящими в состав полимерных молекул, оказывает решающее влияние иа их конформационное состояние в воде. В частности, устойчивость нативной конформации белковых молекул обусловлена определенной последовательностью расположения гидрофобных аминокислотных остатков в полипептидной цепочке. Г. в. обеспечивает специфич. взаимод. ферментов с субстратами, самосборку и разл. аспекты функционирования биомембран и др. надмолекулярных структур. Г. в.-движущая сила адсорбции ПАВ из водных р-ров на границе с воздухом и неполярными жидкими и твердыми фазами ( маслами , гидрофобными минералами типа угля, серы, полимерами типа полиэтилена, полистирола, фторопластов и др.). С Г. в. связана неустойчивость водиых пленок между неполярными фазами, коагуляция и структуро-образование в водных дисперсиях гидрофобных частиц (суспензиях, латексах, флотационных пульпах и др.). [c.568]

    Полученный латекс подвергают коагуляции серной кислотой или алюмокалиевыми квасцами в аппарате из эмалированного чу руна или нержавеющей стали, снабженном мешалкой и барботе-ром. Латекс вводят в раствор коагулянта гонкой струей при перемешивании, затем добавляют аммиачную воду. Через барботер пропускают водяной пар, нагревая смесь до требуемой для коагуляции температуры 80 °С, и отгоняют незаполимеризовавшийся мономер. После двухчасовой коагуляции осаждается тонкий порошок полистирола, которому дают отстояться и промывают горячей водой в лаверах — цилиндрических аппаратах из нержавеющей стали с рамной мешалкой. Промытый полистирол отжимают от избытка воды на центрифуге, после чего с содержанием воды около 60% подают в сушилки с кипящим слоем, а затем на просеивание. [c.94]

    Механо-химические процессы, происход ВО й при смешений и температура так е влияют на свойства смтсй .Свойства смесей полистирола, полиэтилена и поливинилхлорида с каучуками различны, если пластики совмещены ниже температуры плавления или вводятся на стадии латекса. Высокие температуры при совмещении каучуков и пластиков, например СКН и ПВХ, в ряде случаев приводят к структурированию каучуков и препятствуют получению однофазной системы [c.24]

    Прочностные показатели вулканизатов полибутадиена совмещенного с полистиролом незначительно зависят от способа совмещения. Способ совмещения оказывает влияние лишь на сопротивление истиранию, которое выше при совмеи енщ полимеров на вальцах а не на стадии латекса [c.40]

    СКС-30, СКН-18, СКН-40, БК, полиизобутиленом и хлоропреном на вальцах при температуре 150—160 С образуются сополимеры, что подтверждается изменением растворимости в ацетоне и гек-сане. Введение акцептора радикалов (0,1% иода) при вальцевании ликвидирует образование нерастворимого полимера. А. А. Берлин, И. М. Гильман объясняют образование сополимеров механо-хими-ческими реакциями, в которых активную роль играют кислородсодержащие группы каучука, образующиеся при вальцевании. В отличие от данных работы продукт, полученный при совмещении полистирола с каучуками на стадии латекса с последующей коагуляцией смеси аминокалиевыми квасцами, легко разделяется экстракцией и переосаждением на составляющие компоненты. Так, из приведенных примеров видно, что технологические параметры процесса совмещения полистирола с каучуком существенно отражаются на свойствах полученного продукта. [c.40]


Библиография для Полистирол латексы: [c.227]   
Смотреть страницы где упоминается термин Полистирол латексы: [c.293]    [c.25]    [c.56]    [c.186]    [c.290]    [c.457]    [c.810]    [c.202]    [c.78]    [c.198]    [c.84]    [c.68]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.221 ]

Справочник по пластическим массам Том 2 (1975) -- [ c.121 ]




ПОИСК





Смотрите так же термины и статьи:

Латексы



© 2024 chem21.info Реклама на сайте