Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меркаптаны, стабильность

    Эмульсионная полимеризация. Во всех странах для производства хлоропренового каучука применяется эмульсионный способ полимеризации хлоропрена под влиянием инициаторов, реагирующих по свободнорадикальному механизму, с использованием в качестве регуляторов серы или меркаптанов. Одним из основных факторов, определяющих возможность проведения процесса полимеризации в эмульсии является подбор эффективных эмульгаторов, обеспечивающих стабильность эмульсии и латекса в процессе полимеризации. [c.371]


    И дисульфидов может способствовать термическое разложение (обычно путем конверсии в сероводород, происходящей в подогревателе). Однако удаление из газа линейных и циклических сульфидов происходит, несомненно, каталитическим путем, поскольку эти компоненты способны реагировать на катализаторе при температурах, при которых они термически стабильны. Тиофены разлагаются с трудом и в условиях сэндвича Ай-Си-Ай степень удаления их на окиси цинка незначительна. Поэтому соединения типа тиофена иногда относят к нереакционноспособной сере , а другие соединения серы — к реакционноспособной . Скорость разложения меркаптанов, дисульфидов и сульфидов прямо пропорциональна парциальному давлению серусодержащего компонента и почти не зависит от парциального давления углеводорода. На скорость разложения тиофена заметно влияет парциальное давление углеводорода, порядок реакции по парциальному давлению гептана будет равен 0,5. [c.74]

    Для удаления НгЗ из газов чаще других используют растворы моноэтаноламина. Это связано в первую очередь с высокой поглотительной способностью и стабильностью этого растворителя, низкой стоимостью и доступностью его. Однако моноэтаноламин необратимо реагирует с сероуглеродом и меркаптанами. Поэтому применение его ограничивается очисткой газов, не содержащих указанные примеси. При наличии этих примесей рекомендуется применять растворы диэтаноламина. [c.282]

    По аналогии с данными о прочности связи С—С можно счи-тать, что связь С—5 в цикле прочнее, чем в открытой цепи, и при наличии двойной связи в альфа-положении прочность ее значительно увеличивается. Это подтверждается опытной проверкой на термическую стабильность некоторых сернистых соединений, выполненной М. Г. Руденко и В. Н. Громовой [208]. Наименее термически стойкими оказались меркаптаны, которые способны распадаться даже при температурах перегонки различных фракций нефти. Соответствующие меркаптанам сульфиды оказались более термически стабильными. Следующими по величине термической стабильности были тионафтены (тиофаны), а наиболь- [c.39]

    Как было указано выше, каталитическая гидроочистка - наиболее эффективный способ удаления из нефтепродуктов сернистых соединений всех типов. Однако процесс гидроочистки требует высоких капитальных и эксплуатационных затрат, и мощности по гидроочистке на НПЗ не всегда обеспечивают очистку всех вырабатываемых на заводах топлив. В ряде случаев выгодна очистка топлив простыми по технологическому оформлению и дешевыми процессами селективной демеркаптанизации. Нельзя оставить без внимания и тот факт, что зарубежными стандартами предусматривается более высокое (до 0,3-0,4 %), чем у нас (до 0,2 %) содержание в реактивных топливах общей серы и допускается возможность введения в топливо антиокислителей и деактнваторов металлов. Установлено, что дизельные топлива, содержащие 0,2-0,3 % общей серы, при отсутствии в них меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив [1]. [c.19]


Рис. 66. Влияние меркаптанов на термоокислительную стабильность и коррозионную активность топлива ТС-1 при 150 С Рис. 66. Влияние меркаптанов на <a href="/info/397812">термоокислительную стабильность</a> и <a href="/info/403576">коррозионную активность</a> топлива ТС-1 при 150 С
    При увеличении содержания меркаптанов до 0,01% осадкообразование увеличивается в 6—8 раз. Значительно ухудшают термоокислительную стабильность топлива элементарная сера, тиофены, тиофаны, сульфиды и дисульфиды. При прочих равных условиях, отрицательное влияние сероорганических соединений на термоокислительную стабильность топлива определяется строением их углеводородного радикала. В табл. 30 даются предельные концентрации сернистых соединений в топливе. Выше этих количеств тер- [c.113]

    Дизельное топливо как высококипяш ий продукт при длительном хранении в естественных условиях испарению не подвергается. Поэтому такие показатели его качества, как плотность, фракционный состав, вязкость, температура вспышки в процессе хранения сухцествеппо не изменяются. Практически не наблюдается изменения и по содержанию серы в дизельном топливе, его цетанового числа, температур начала кристаллизации и застывания, коксуемости и цвета. Исключением являются топлива, содержащие большое количество непредельных углеводородов в этих топливах в процессе хранения несколько увеличивается коксуемость и ухудшается цвет. Наличием непредельных углеводородов в топливе, а также таких легкоокис-ляющихся соединений, как меркаптаны, определяется химическая стабильность топлив при длительном хранении. При хранении таких топлив увеличивается содержание в них фактических смол, снижается содержание меркаптанов и образуется осадок. [c.187]

    Органические дисульфиды являются аналогами органических перекисей, но значительно стабильнее. Пиролиз дисульфидов обычно ведет к образованию меркаптанов низших дисульфидов и сероводорода. В присутствии аминов и других оснований дисульфиды растворяют свободную серу, образуя полисульфиды. Под действием натрия в этиловом эфире дисульфиды расщепляются с образованием двух молекул меркаптидов натрия. При окислении различными реагентами получаются многочисленные продукты. Так, в результате окисления дисульфидов перекисью водорода образуются сложные тиоэфиры сульфоновой кислоты, а при окислении горячей азотной кислотой связь 8=8 переходиг в 80зН. [c.30]

    Глубина очистки бензиновых фракций от серы и других примесей, а также стабильность работы катализатора, зависят от температуры процесса, парциального давления водорода, объёмной скорости подачи сырья и от соотношения водород сырьё. Рабочий диапазон температур находится в интервале 300-380°С. В начале рабочего цикла устанавливается минимальная температура, обеспечивающая заданную глубину очистки сырья. Несвоевременное повышение температуры ускоряет закоксовывание катализатора, не увеличивая сколько-нибедь существенно глубины очистки. Кроме того, при высокой температуре на катализаторе с высокой активностью протекают реакции дегидрирования, что приводит к повышению содержания олефи-нов в гидрогенизате, при этом взаимодействие олефинов с сероводородом с образованием меркаптанов приводит к дезактивации катализатора риформинга.  [c.84]

    Влняние индивидуальных меркаптанов на термоокислительную стабильность гидрированного топлива ТС-1 (в стеклянных сосудах без контакта с бронзой) [c.87]

    Удаление меркаптанов является эффективным средством повышения стабильности бензинов в процессе хранения [57]. [c.67]

    На каждом ГПЗ существуют свои особенности очистки и разделения газа в зависимости от его состава и входных параметров, но стадии переработки газа для всех ГПЗ общие. На первом этапе осуществляется механическая сепарация газа, затем очистка его от кислых компонентов (от сероводорода, диоксида углерода, серооксида углерода, сероуглерода и меркаптанов) и разделение углеводородов, входящих в состав природного газа, обычно на сухой газ (С, - С2) и ШФЛУ с последующей реализацией этих продуктов как товарных, либо с выделением из ШФЛУ пропановой и бутановой фракции (или ПБФ) и легкого стабильного конденсата. [c.177]

    Существует заметное различие между термической стабильностью меркаптанов и дисульфидов, которые термически разлагаются при 150—250° С, и между сульфидами и соединениями типа тиофена, которые стабильны до 400° С- Некоторое термическое разложение с образованием сероводорода может происходить в подогревателе или в испарительной части установки сероочистки, расположенной перед катализатором. [c.73]

    Едкий натр в смеси с другими растворителями — усилителями растворения меркаптанов в щелочах — полнее растворяет и извлекает меркаптаны. Прибавляемые к водному раствору щелочи-усилители растворения являются, как правило, органическими веществами. Они должны хорощо растворяться в водном растворе щелочи и не растворяться в нефтепродукте, иметь более высокую упругость паров, чем упругость паров воды быть химически стабильными в растворе при низких и высоких температурах. [c.318]


    Данные табл. 9 и 10 свидетельствуют о том, что потенциально из указанных фракций можно выделить тысячи тонн меркаптанов и десятки тысяч тонн сульфидов. При этом можно получать высококачественные топлива, чего обычными методами (без гидроочистки) достичь не удается. Во фракциях останутся лишь гомологи тиофенов — сравнительно стабильные сернистые соединения, заметно не ухудшающие качество топлив [А]. [c.35]

    Присутствие меркаптанов в бензине увеличивает его коррозионную агрессивность, ухудшает химическую стабильность, способствует образованию смол, нагаров и т.д. [c.73]

    Химическая стабильность бензинов зависит от содержания и типа сероорганических соединений. Меркаптаны, сульфиды и дисульфиды задерживают развитие процесса окисления бензинов, не содержащих антиокислительных присадок. Наибольший ингибирующий эффект наблюдается при введении в бензин ароматических меркаптанов. Так, при добавке к бензину термического крекинга 0,05 % мае. (считая на 8) бензилмеркаптана поглощение кислорода и рост кислотности при окислении в лабораторных условиях при 110°С уменьшаются в 4 раза [13, с. 509, 516]. [c.265]

    Известно, что надежность и хорошая работа топливной аппаратуры современных двигателей сильно зависит от содержания в топливе меркаптанов. По нормам ГОСТов концентрация меркаптановой серы в топливе ТС-1 не должна превышать 0,005%, в топливе РТ- 0,001%, в дизельном топливе для быстроходных двигателей - 0,01%. Повышенное содержание меркаптанов в топливах приводит к ухудшению их термической стабильности, способствует увеличению отложений на поверхности деталей, с которыми соприкасаются топлива в системе двигателя, усиливает коррозионную агрессивность топлив [12]. [c.9]

    Влияние жркаптанов. С увеличением содержания меркаптанов стабильность топлив уменьшается, воарастает коррозия металлов, которые контактируют с нагретым топливом (табл. 52 и рис. 9). [c.87]

    Содержание МЭА в водном растворе не превышает, как правило, 15— 20%(об.). При насыщении кислыми компонентами более концентрированных, растворов увеличивается скорость коррозии металлов (чистый алканолами-новый раствор не обладает коррозионной активностью). Однако в связи с разработкой ингибиторов коррозии появилась возможность увеличить концентрацию МЭА в растворе до 30% (об.), что делает процесс МЭА-очистки более рентабельным и перспективным. Объясняется это высокой поглотительной способностью и стабильностью растворов МЭА, его низкой стоимостью и доступностью. Однако применение МЭА практически ограничивается очисткой природного и попутного нефтяного газов, не содержащих примеси сероксида углерода, сероуглерода и меркаптанов, которые необратимо реагируют с моноэтаноламином. [c.6]

    Термоокислительная стабильность реактивных топлив при высоких температурах снижается в присутствии смолистых и сернистых соединений и особенно при наличии меркаптанов (рис. 5.4, 5.5 и табл. 5.3). В их присутствии уменьшается индукционный период (рис. 5.6) и в результате образования нерастворимых продуктов окисления ограничивается эксплуатационная температура прямогонных топлив в пределах 100—120°С (см. гл. 1). Воздействие смолистых веществ может быть различно, так как в них содержатся антиокислители и проокислители [169]. Непредельные соединения легко окисляются и поэтому содержание их нормируется стандартами. [c.158]

    К 50-ому циклу степень превращения меркаптанов падает с 99 до 96%. Такое падение, очевидно, связано с вымыванием с поверхности угля едкого натра. Повторная пропитка катализатора раствором едкого натра восстанавливает активнос гь катализатора - степень превращения меркаптанов вновь достигает 99,5 %. По результатам испытаний гетерогенных катализаторов в периодическом режиме для изучения кинетики реакции и дальнейших испытаний процесса демеркаптанизации выбрано сочетание угля АГ-3 с катализатором ИВКАЗ, показавшее себя наиболее активным и стабильным. [c.70]

    Исследования последних лет показали, что сернистые соединения наряду с корродирующими обладают и стабилизирующими свойствами против окисления топлив и образования осадков поэтому их присутствие в топливе в нормируемом количестве может быть полезно. Установлено [1], что соединения с различными серосодержащими функциональными группами, при определенной для каяодой группы концентрации, тормозят процессы окисления углеводородов в топливах. Так, дизельные топлива, содержащие 0,2—0,3% общей серы, при отсутствии меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив. Реактивное топливо Т-7, содержащее 0,0005—0,001% меркаптанов, обладает меньшей окисляемостью, чем топливо, не содержащее общей и меркаптановой серы. Как отмечают авторы, при гидроочистке реактивных топлив не обязательно сохранять в них не менее 0,001% меркаптанов, так как и другие органические соединения серы имеют антиокислительные функции. [c.50]

    На рис. 7.1 приведена температурная зависимость констант равновесия гидрогенолиза сернистых соединений, содержащихся в нефтяном сырье. Видно, 4Tolg p во всем рассмотренном интервале температур имеет положительное значение. Выделяется прямая для тиофена, имеющая значительно больший угол наклона, т.е. константа равновесия гидрогенолиза тиофена наиболее быстро падает с ростом температуры. Скорость гидрогенолиза сернистых соединений уменьшается при переходе от меркаптанов к производным тиофена и ароматическим сульфидам. При усложнении структур, окружающих тиофеновое капьцо ()гвеличение числа ароматических колец а молекуле), стабильность соединений возрастает. [c.170]

Рис. I. 8. Влияние глубины очистки от меркаптанов на стабильность крекинг-бензнна, содержащего 0,065% древесно-смольного антиокислителя (хранение при 40° С) [57]. Рис. I. 8. <a href="/info/1515866">Влияние глубины</a> очистки от меркаптанов на стабильность крекинг-<a href="/info/133569">бензнна</a>, содержащего 0,065% <a href="/info/619907">древесно-смольного антиокислителя</a> (хранение при 40° С) [57].
    Сернистые соединения нефти весьма разнообразны. Некоторые нефти содержат свободную серу, которая при длительном стоянии выпадает в виде аморфного осадка. Однако большей частью сера в нефтях и нефтепродз ктах находится в связанном состоянии, т. е. в виде органических соединений. Например, в керосиновой фракции ишимбайской нефти, содержащей 1,9% 8, сернистые соединения распрелелнются следующим образом 0,07% сероводорода, 0,05% элементарной серы, 0,14% меркаптанов, 0,05% дисульфидов, 0,18 /о сульфидов, 1,4% остаточной серы. Почти три четверти всей серы приходится на долю остаточной. Состав последней мало изучен. Основную ее массу состапляют тиофаны. Сернистые соединения нефти можно разделить на три группы. К первой группе относятся сероводород и меркаптаны, обладающие кислотными, а потому и наиболее корродирующими свойствами. Ко второй группе относятся нейтральные на холоду, термически малоустойчивые сульфиды и дисульфиды. Уже при 130—160° С сульфиды и дисульфиды начинают распадаться с образованием сероводорода и меркаптанов. К третьей группе сернистых соедш ений относятся терми чески стабильные циклические соединения — тиофаны и тиофены. [c.35]

    Продукты, очищенные хлористым цинком, обладают помимо сниженного содержания сернистых соединений удовлетворительной стабильностью цвета и смолообразования. По данным Лахмана, содержание серы в бензине снижается с 0,28 до 0,19% (при снижении содержания меркаптанов с 0,017 до 0,007%), а содержание смол (определяемых в медной чашке) с 290 до 3 мг. Потери в процессе невелики, но при очистке крекинг-бензина получаются в количестве до 10% полимеры (нодогон), требующие дополнительной переработки. [c.315]

    На нефтеперерабатывающих заводах первичная переработка обессоленных и обезвоженных нефтей начинается с их ректификации, во время которой относительно стабильные углеводороды и лабильные сераорганические соединения подвергаются одинако- вому термическому воздействию. В связи с этим для 189 нефтей различных месторождений был определен порог термостабильности содержащихся в них сераорганических соединений, т. е. минимальная температура, при которой наблюдается образование сероводорода или меркаптанов. Оказалось, что порог термостабильности определяется характером коллектора нефти и не зависит от его возраста и количества содержащейся в нефти серы. Для нефтей, приуроченных к песчанникам, порог термостабильности (200—300°) значительно выше, чем для нефтей, приуроченных к известнякам (40—80°). В случае переслаивающихся коллекторов порог термостабильности (100—180°) занимает промежуточное положение (рис. 2). [c.8]

    Топливо РТ полностью соответствует требованиям, предъявляемым к реактивным топливам высшей категории качества, и находится на международном уровне, превосходя его по отдельньпи эксплуатационным свойствам. Оно имеет высокие противоизносные свойства, химическую и термоокислительную стабильность, не агрессивно в отношении конструкционных материалов, практически не содержит меркаптанов и содержит менее 0,02 % общей серы, может храниться до 10 лет без изменения качества и полностью обеспечивает ресурс работы двигателя. [c.66]

    В настоящее время весь добываемый на Оренбургском месторождении газ комплексно перерабатывается на крупнейшем Оренбургском газоперерабатывающем заводе, на котором получают очищенный от сероводорода и отсепарированный от тяжелых углеводородов товарный газ, жидкая и гранулированная сера, широкая фракция углеводородов, стабильный конденсат. Осваивается производство гелия, атана из газа и получение меркаптанов (одоранта) из углеводородных конденсатов. Характеристика товарного газа в сопоставлении с сырым газом Оренбургского месторождения приведена в табл. 201. [c.243]


Смотреть страницы где упоминается термин Меркаптаны, стабильность: [c.112]    [c.228]    [c.384]    [c.23]    [c.229]    [c.48]    [c.40]    [c.172]    [c.48]    [c.15]    [c.194]    [c.73]    [c.141]    [c.215]    [c.84]    [c.23]    [c.283]    [c.119]   
Алюмогидрид лития и его применение в органической химии (1957) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Меркаптаны



© 2025 chem21.info Реклама на сайте