Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стабильность углеводородов

    V Фторуглероды гораздо стабильнее углеводородов. Они более стойки к воздействию других веществ или тепла. Они не растворяются в воде и почти не растворяются в других жидкостях. Из длинных фторуглеродных цепей можно получить интересные пластики. Один из них был выпущен фирмой Дюпон под названием Тефлон его еще называют Флуон . Он не боится самых сильных кислот и нагревания до 325 "С и к тому же служит прекрасным электроизолятором. [c.79]


    Термоокислительная стабильность углеводородов реактивных топлив [c.112]

    На основании рассмотренного выше механизма зарождения цепей можно не только оценивать противоокислительную стабильность углеводородов различного строения, но и объяснить некоторые особенности процесса жидкофазного окисления. [c.36]

    Наибольшей стабильностью к окислению обладают ароматические углеводороды, не имеющие боковых цепей. С увеличением числа циклов в молекуле ароматических углеводородов их стабильность против окисления уменьшается. Нафтеновые углеводороды и углеводороды, содержащие одновременно ароматические и нафтеновые циклы в молекуле, менее устойчивы, чем ароматические. Наличие алифатических боковых цепей в молекулах циклических углеводородов снижает стабильность углеводородов против окисления. Чем больше боковых цепей у ароматических и нафтеновых циклов и чем они длиннее, тем менее устойчива молекула углеводорода к воздействию кислорода. Наличие в молекулах третичных атомов углерода снижает стабильность углеводородов к окислению. Наоборот, четвертичный атом углерода в молекуле как бы экранирует углеводород от внедрения кислорода и тормозит окислительный процесс. При наличии боковых цепей у циклических углеводородов раньше всего подвергаются окислению эти цепи, а затем уже сам цикл. При неглубоком окислении циклических углеводородов, содержащих длинные алкильные боковые цепи, характер цикла не влияет на степень поглощения кислорода. [c.65]

    Высокое октановое число получается при более глубокой конверсии за проход II обычно зависит от степени стабильности углеводородов нефти, направляемых в зону крекинга. Так, исходное сырье с низкой анилиновой точкой и низким содержанием парафиновых углеводородов, выраженным характеристическим фактором Ватсона [27, 28], может дать в результате крекинг-процесса высокооктановый бензин. На любой крекинг-установке высокая температура требуется либо для получения заданной конверсии за проход при использовании более стабильного сырья, либо для достижения большей конверсии нри заданном сырье. [c.34]

    Очевидно, что при такой последовательности очистки в масле останутся только наиболее кислотостойкие, т. е. наиболее хими чески стабильные углеводороды, что позволяет считать эффек--тивным вышеописанный процесс очистки. Степень очистки обычна проверяется стандартными методами испытания, установленными в США для фармацевтических препаратов [8]. Эти методы преду-сматривают нагревание одинаковых объемов масла и 95 %-ной серной кислоты в кипящей воде в течение 10 мин со встряхиванием каждые 30 сек. [c.559]


    Наиболее важным преимуществом ЦСК является их повышенная селективность в процессах крекинга, меньший выход сухого газа и кокса по сравнению с АСК. Причем селективность выхода бензина возрастает по мере увеличения конверсии сырья вследствие стабилизирующего действия Н-переноса (АГ3), в результате которого нестабильные олефиновые промежуточные продукты, в значительной мере не крекируясь, превращаются в достаточно стабильные углеводороды [c.106]

    Если при действии серусодержащих соединений на алюмоплатиновый катализатор происходит частичное превращение платины. в сульфид Р15 2П ], то это еще не означает полной дезактивации осерненной части металла. Так, поданным [192] сульфиды платины катализируют селективное гидрирование диолефинов и циклодиенов в более стабильные углеводороды с одной двойной связью. Возможно, что ненасыщенные поверхностные соединения, ответственные за образование кокса на платине, подвергаются гидрированию на сульфиде этого металла, что может способствовать снижению коксообразования. [c.97]

    Для рещения этого вопроса на рис. 20 приведена зависимость изменения свободной энергии образования- некоторых углеводородов от температуры в пределах 300—1200 К. Эти данные позволяют установить относительную стабильность углеводородов. Повыщение температуры снижает прочность углеводородов. Как видно из рис. 20, метан при всех температурах устойчивее других соединений термическая устойчивость парафиновых углеводородов понижается при переходе к высшим членам гомологического ряда. Следовательно, при нагревании в первую очередь расщепляются углеводороды с длинной цепью. Место разрыва связи с повышением температуры сдвигается к краю цепи, и образуются более устойчивые углеводороды с короткими цепями вплоть до метана. Однако и метан выше 820 К начинает разлагаться на углерод и водород. Метановые и нафтеновые углеводороды при низких температурах (ниже 500 К) более стабильны, а при высоких температурах более устойчивы ароматические углеводороды и олефины и поэтому при высоких температурах они будут накапливаться в продуктах расщепления. [c.63]

    Данные элементарного анализа подтверждают, что при окислении топлив Т-8 и Т-6 источником образования смолистых продуктов являются наименее стабильные углеводороды, а не остающиеся в топливах небольшие количества сернистых и азотистых соединений. [c.21]

    Тип этих реакций и, следовательно, скорость, глубина и пос-ледова цельность превращений зависят от стабильности углеводородов различных классов в условиях крекинга. Мерой стабильности с достаточной степенью точности может служить величина изобарно-изотермического потенциала образования углеводородов АС°об> который является сильной функцией температуры. В табл. 7.2 приведены значения АС об углеводородов различных классов с одинаковым числом атомов углерода и углеводородов одного класса (алканов) с различным числом атомов углерода. [c.130]

    Что характеризует стабильность углеводородов в процессе крекинга и как она зависит от температуры и сложности молекулы углеводорода  [c.152]

    Содержание кислородсодержащих соединений в нефтепродуктах изменяется во времени в зависимости от внешних условий, химической стабильности углеводородов и уже имеющихся в них гетероатомных соединений. [c.257]

    Последовательность процесса стабилизации. Общепринято считать, что стабильность углеводородов снижается с уменьшением относительной молекулярной массы. Метан, например, является наименее химически активным соединением во всем классе парафинов. По уменьшению термической стабильности (увеличению реакционной способности) углеводороды располагаются в следующем порядке метан, этан, пропан, изобутан, нормальный бутан, неопентан, нормальный пентан, изопентан, нормальный гексан, 2-метилпентан. [c.37]

    Наличие боковых цепей у нафтеновых углеводородов и появление, таким образом, третичного углерода в месте присоединения цени уменьшает стабильность углеводорода при окислении его молекулярным кислородом. Это особенно отчетливо можно отметить на примере окисления циклогексана и метилциклогексана [2] под давлением 15 ат О2 при 80° в течение 6 час. Результаты опыта приведены в табл. 97. [c.273]

    Когда в алкильных цепях имеется четвертичный углерод на конце цепи, углеводород оказывается весьма устойчивым при окислении. В этом случае увеличение количества цепей указанных типов увеличивает стабильность углеводорода против окисления молекулярным кислородом (см. данные по углеводородам 2 и 5 в табл. 100). [c.276]

    В отличие от сернистых п азотистых соединений, переходящих в дистилляты из нефти, кислородные соединения накапливаются в нефтепродуктах в основном за счет автоокисления наименее стабильных углеводородов. Например, керосин термического крекинга, в котором содержится значительное количество нестабильных углеводородов, может служить источником получения кислородных соединений. [c.206]


    Хранение и транспортирование нефтепродуктов в среде инертного газа или при изолировании их от кислорода воздуха ограничило бы или полностью предотвратило автоокисление углеводородов. Однако такой режим эксплуатации топлив трудно осуществим. Поэтому автоокисление (в большей или меньшей степени) наименее стабильных углеводородов нефтепродуктов неизбежно. [c.208]

    Процесс окисления складывается из двух стадий физической, заключающейся в переходе кислорода из воздуха в раствор углеводородов, и химической — на этой стадии происходит реакция взаимодействия кислорода с наименее стабильными углеводородами. Кислород из [c.208]

    Насыщенные углеводороды. Алканы и цикланы относятся к наиболее стабильным углеводородам нефтепродуктов. Тем не менее и они подвержены автоокислению. Получаемые при этом насыщенные кислородные соединения также сравнительно стабильны. Они растворены в углеводородной среде и в обычных условиях почти не склонны к образованию продуктов уплотнения, как это происходит с кислородными соединениями ненасыщенных и алкилароматических углеводородов. [c.213]

    Как известно, в составе нефти имеются углеводороды, кипящие при атмосферном давлении в интервале температур 400— 500°С и выше в то время как термическая стабильность углеводородов сохраняется только до 380—400 "С. При более высокой температуре начинается процесс разложения — крекинга углеводородов, причем наиболее высококипящие углеводороды нефти обладают наименьшей термической стабильностью. [c.121]

    Преобладающим типом химических превращений при деструктивных процессах переработки нефти является распад углеводородов. Термическая стабильность углеводородов неодинакова и [c.172]

    Применяемое сырье, получаемые полупродукты и побочные продукты, поскольку в их составе отсутствуют молекулы с тройными связями, являются менее взрывоопасными и более стабильными углеводородами по сравнению с углеводородами ацетиленового ряда. Бутадиен, в отличие от ацетилена и его производных, имеет повышенную устойчивость к разложению и пе обладает в чистом виде в условиях производства взрывчатыми свойствами и способностью детонировать. Получаемые при хлорировании дихлорбуте-ны, побочные продукты хлорирования, перхлорирования и термического деструктивного дегидрохлорирования (углерод в виде сажи) малогорючи или совсем негорючи, термически более стойки и менее летучи по сравнению с исходным бутадиеном. [c.66]

    Сравнивая результаты каталитического и термического крекинга индивидуальных углеводородов различных рядов, нетрудно убедиться, что, хотя основной первичной реакцией в том и другом (лучае является реакция распада, снособность к распаду пе одп-][акопа. Применение катализатора при крекинге уменьшает сте-][опь солротивляемостн распаду углеводородов различных рядов. Но стабильности углеводороды отдельных рядов нри термическом и каталитическом крекипге можно расположить в следуюп ем порядке. [c.456]

    Очень важна для эксплуатации топлив возможность снижать в них осадкообразование. Нерастворимые осадки, образующиеся под влиянием высокой температуры, действия металлов и кислорода воздуха, являются продуктами гл-убоких превращений наименее стабильных углеводородов топлива, а также кислород-, серу-и азотсодержащих соединений в окислительной среде. Значительную роль при осадкообразовании играет изменение коллоидного состояния продуктов окисления топлив под влиянием температуры. Нерастворимые осадки могут образовываться в результате коагуляции коллоидных частиц смол, асфальтенов и других продуктов окисления, происходящей при определенных температурах, характерных для каждого топлива. При дальнейшем повышении температуры эти частицы могут вновь диспергироваться или растворяться в топливе. Поэтому, вероятно, эффективными диспергирующими присадками, используемыми для улучшения условий фильтрования топлив при высоких температурах, могут служить некоторые типичные стабилизаторы коллоидных систем — пептизаторы. [c.253]

    Термодинамическая стабильность углеводородов. Для оценки возможных превращений углеводородов при переработке важную роль лграет их термодинамическая стабильность. [c.35]

    Резкое возрастание содержания метанольиых адсорбционных смол после нагрева гидроочищенного и гидрированного топлива свидетельствует о том, что в выбранных условиях в первую очередь интенсивно окисляются наименее стабильные углеводороды, содержащиеся в топливе. Сравнительно небольшое увеличение содержания продуктов окисления, десорбируемых уксусной кислотой, указывает на второстепенное значение процессов дальнейшего окисления неуглеводородных продуктов. [c.18]

    При добавлении 0,025% или 0,02% ИПОДА склонность топлива Т-7 к окислению возрастает. Особо сильно это проявляется при добавлении ИПОДА, который является инициатором окисления наименее стабильных углеводородов этого топлива, что проявляется в довольно резком возрастании содержания в топливе метанольных смол. Наряду с этим происходит окисление и окислительное уплотнение уже содержащихся в топливе продуктов окисления, в результате чего возрастает его кислотность, содержание в топливе смолистых соединений, десорбируемых уксусной кислотой, и фактических смол, а также резко возрастает интенсивность окрашивания. Следует [c.41]

    Таким образом, приведенные в табл. 2 данные полностью подтверждают способность сополимера, и особенно ИПОДА, инициировать окисление наименее стабильных углеводородов, содержащихся в топливе следовательно, эффективность этих продуктов улучшать термическую стабильность топлив может быть обусловлена только их диспергирующими свойствами. [c.43]

    На нефтеперерабатывающих заводах первичная переработка обессоленных и обезвоженных нефтей начинается с их ректификации, во время которой относительно стабильные углеводороды и лабильные сераорганические соединения подвергаются одинако- вому термическому воздействию. В связи с этим для 189 нефтей различных месторождений был определен порог термостабильности содержащихся в них сераорганических соединений, т. е. минимальная температура, при которой наблюдается образование сероводорода или меркаптанов. Оказалось, что порог термостабильности определяется характером коллектора нефти и не зависит от его возраста и количества содержащейся в нефти серы. Для нефтей, приуроченных к песчанникам, порог термостабильности (200—300°) значительно выше, чем для нефтей, приуроченных к известнякам (40—80°). В случае переслаивающихся коллекторов порог термостабильности (100—180°) занимает промежуточное положение (рис. 2). [c.8]

    На отечественных установках пиролиза ЭП-300 переработку смолы пиролиза предусматривают по способу, разработанному институтами ВНИИолефин, ИГИ и НИИСС [129, 130]. Технологическая схема процесса представлена на рис. 39. Из сырья предварительно выделяется фракция бензол — толуол — ксилол с пределами выкипания 70—150 С, содержащая 85—95%- ароматических углеводородов, 5—15% неароматических углеводородов и 0,02—0,1% серы. На I ступени эта фракция подвергается гидростабилизации при 40—170 °С, 3—5 МПа и объемной скорости подачи сырья 5—7 ч на палладиевом катализаторе (0,5% Рс1 в виде сульфида на оксиде алюминия). В таких условиях гидрируются наименее стабильные углеводороды (диены и алкенилбен-золы). На II ступени в газовой фазе при 350—400°С, 3—5 МПа и объемной скорости 1 ч на алюмокобальтмолибденовом или алюмоникельмолибденовом катализаторе происходит полное гидрирование непредельных углеводородов и гидрогенизационное обессеривание. Ароматические углеводороды ни на первой, ни на второй ступени практически не гидрируются. [c.188]

    Нефтяные фракции представл500т собой сложную смесь углеводородов, которые обладают различной стабильностью при крекинге. В результате менее стабильные углеводороды подвергаются крекингу в первую очередь, а остаток обогащается более стабильными компонентами, например ароматическими углеводородами, которые, практически не разлагаясь в ходе процесса, либо удаляются из реактора, либо конденсируются на поверхности катализатора в продукты коксообразования. Поэтому непрореагировавшее сьфье можно улучшить путем гидрирования оставшихся в нем ароматических соедине- [c.46]

    В области высоких конверсий превращение бензина на цеолитах протекает медленно вследствие стабилизующего действия реакции Н-переноса, в результате которой нестабильные олефиновые углеводороды в бензине, в-значительной мере не крекируясь, П1эевращаются в достаточно стабильные углеводороды [27]  [c.52]

    Рассмотревие химизма термического и каталитического крекингов углеводородов различных рядов показывает, что основной первичной реакцией в том и другом случае является реакция распада. Применение катализатора значительно увеличивает скорость крекинга й уменыпоет степень сопротивляемости распаду углеводородов различных рядов. По стабильности углеводороды отдельных рядов при термическом и каталитическом крекинге можно расположить в следующем порядке  [c.28]

    Эти данные показывают, что наличие алкильных цепей в ароматическом углеводороде понижает стойкость его при окислении в жидкой фазе. Окисление а- и /3-метилнафталинов показывает, что положение алкильной цепи влияет на глубину окисления углеводородов, из данных анализа 1,6-диметилнафталина видно, что увеличение числа алкильных цепей понижает стабильность углеводорода. [c.270]

    Таким обра вом, мы можем констатировать, что стабильность углеводородов изменяется в зависимости от положения четвертичного атома углерода в цепи. Наиболее стабильны против окисления те углеводороды, в которых четвертичный атом углерода находится на конце цепи. Наличие четвертичного углерода в а-положении по отношению к ароматическому радикалу не предохраняет молекулу от окисления. [c.276]

    Окисление углеводородов нефтепродукта зависит от проникновения в жидкую фазу кислорода воздуха и от состава окисляющейся смеси. Вначале окисляются менее стабильные, а затем и стабильные углеводороды. По уменьшающейся склонности к окислению углеводороды можно условно расположить в следующий ряд алка-диенилциклические > алкенилциклические > алкиларо-матические > алкилнафтеновые > алкены > нормальные [c.207]

    Менее стабильные углеводороды нефтяных дистиллятов и топлив автоокисляются в растворе более стабильных углеводородов различного строения. Кроме углеводородов в растворителе содержится примесь сернистых, кислородных азотистых соединений. Имеются многочисленные данные, указывающие на неносредственное участие раство- [c.212]

    Параметры процесса. Состав сырья. В одинаковых условиях крекинга скорость реакции растет с повышением температуры кипения сырья. Такая особенность 0б11ясняется различной термической стабильностью углеводородов. Высокомолекулярные парафиновые углеводороды, а также ароматические углеводороды с длинной боковой парафиновой цепью менее термически стабильны, чем низкомолекулярные углеводороды. Поэтому при крекинге последних будет образовываться меньше продуктов разложения. [c.182]


Смотреть страницы где упоминается термин Стабильность углеводородов: [c.515]    [c.537]    [c.280]    [c.35]    [c.121]    [c.211]    [c.115]    [c.86]    [c.122]    [c.24]   
Общая химическая технология (1977) -- [ c.310 ]




ПОИСК







© 2025 chem21.info Реклама на сайте