Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спинномозговая жидкость

    Во сколько раз концентрация ионов водорода В крови (pH = 7,36) больше, чем в спинномозговой жидкости (pH = 7,53)  [c.138]

    Глюкоза играет важную роль в жизнедеятельности человека и животных. В количестве 5—6 г у взрослого человека она содержится в крови и спинномозговой жидкости. Кровь разносит глюкозу по всем клеткам тела, в которых в результате сложнейших последовательно происходящих реакций с различными химическими соединениями она превращается в углекислый газ и воду, используя выделяющуюся при этом энергию. В этом и заключена суть дыхания к клетке подводится гемоглобином вдыхаемый кислород, который окисляет глюкозу в углекислый газ и воду, выбрасываемые затем организмом. [c.148]


    Осмотическое давление в жидкостях организма (кровь, лимфа, межклеточная жидкость, спинномозговая жидкость и др.) выполняет важную физиологическую функцию, влияющую на распределение в тканях организма воды, солей и различных питательных веществ. Осмотическое давление указанных биологических жидкостей зависит главным образом от растворенных в них низкомолекулярных минеральных веществ, преимущественно хлористого натрия, но также от высокомолекулярных соединений, находящихся в коллоидном состоянии, главным образом белков. [c.227]

    Электропроводность разных тканей и биологических жидкостей неодинакова наибольшей электропроводностью обладают спинномозговая жидкость, лимфа, желчь, кровь хорошо проводят ток также мышцы, подкожная клетчатка, серое вещество головного мозга. Значительно ниже электропроводность легких, сердца, печени. Очень низка она у жировой ткани, нервной, костной. Хуже всего проводит электрический ток кожа (роговой слой). Сухой эпидермис почти не обладает электропроводностью. Жидкость межклеточных пространств гораздо лучше проводит ток, чем клетки, оболочки которых оказываются существенным препятствием при движении многих ионов. Возле оболочек накапливаются одноименные ионы, возникает их поляризация. Все это приводит к резкому (в 10—100 раз) падению силы постоянного тока, проходящего через ткани, уже через 0,0001 сек после его замыкания. Поэтому электропроводность кожи обусловлена, главным образом, содержанием протоков желез, особенно потовых. В зависимости от физиологи- [c.43]

    Важное место среди аминопроизводных моносахаров занимает нейра-миновая кислота и ее производные — сиаловые кислоты Моносахаридной основой нейраминовой кислоты (по классификации углеводов) является кето-ноноза. Сиаловые кислоты — это ее ацилированные по азоту и кислороду производные, содержащиеся в свободном состоянии в спинномозговой жидкости. [c.50]

    Высокое содержанке воды свидетельствует о том, что в процессе жизнедеятельности организма она играет важную роль. Вода входит в состав белковых коллоидов и принимает непосредственное участие в построении структур живых клеток и тканей. Кровь, лимфа, спинномозговая жидкость у высокоорганизованных [c.45]

    Дисперсные системы, в частности коллоидные, широко распространены 1 природе. Такие биологические жидкости животных организмов, как кровь, плазма, лимфа, спинномозговая жидкость и др. представляют собой коллоидные системы, в которых ряд веществ, например белки, холестерин, гликоген и др., находятся в коллоидном состоянии то же можно сказать о белках, крахмале, слизях и камедях в растениях. [c.136]


    Золотые, рубиновые и другие числа являются обратной мерой защитного действия, так как они тем меньше, чем сильнее это действие. Измерения золотого числа спинномозговой жидкости используются для диагностических целей при некоторых заболеваниях. [c.146]

    Содержание белка в цереброспинальной жидкости незначительно (0,15— 0,40 г/л), причем отношение альбумины/глобулины равно 4 липидов в сотни раз меньше, чем в плазме крови. Возможно, что липиды плазмы крови в цереброспинальной жидкости отсутствуют. Общее содержание низкомолекулярных азотсодержащих веществ, особенно аминокислот, в 2—2,5 раза меньше, чем в крови. В ткани мозга, как отмечалось, количество свободных аминокислот велико и во много раз превышает концентрацию их в крови и тем более в цереброспинальной жидкости. Установлено, что некоторые аминокислоты (например, глутаминовая кислота) почти не проникают через гематоэнцефалический барьер. В то же время амиды аминокислот (в частности, глутамин) легко преодолевают этот барьер. Содержание глюкозы в цереброспинальной жидкости относительно велико (2,50—4,16 ммоль/л), но несколько меньше, чем в крови, причем концентрация глюкозы в спинномозговой жидкости может повышаться или снижаться в зависимости от изменений содержания глюкозы в крови. [c.644]

    Чувствительность метода. Метод применим для исследования образцов, содержащих не менее 0,01 мг белка. С его помощью довольно удобно определять концентрацию белков в растворах с малым содержанием белка, например в спинномозговой жидкости, в водянистой влаге глаза и т. д. [c.70]

    Концентрация и осмотическое давление различных жидкостей в организме поддерживаются на постоянном уровне действием специальных осморегуляторов. Осмотическое давлегше растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. Плазма крови, лимфа, слезная и спинномозговая жидкость имеют постоянное осмотическое давление (гипертонический раствор) в результате разности осмотических давлений внутри эритроцитов и окружающей та плазмы осуществляется движение воды из эритроцитов, идущее до выравнивания осмотических давлений. Эритроциты при этом, лишаясь части водьт, сморщиваются (плазмолиз). Если вводится раствор с малым осмотическим давлением (гипотонический раствор), жидкость проникает внутрь клетки эритроцит разбухает, клеточная оболочка может нарушиться, а клетка погибнуть (гемолиз). Чтобы избежать указанных осмотических сдвигов необходимо изотонизировать раствор до уровня осмотического давления биологических жидкостей оргатшзма. Такие растворы называются изотоническими. [c.635]

    Бактериологическое исследование. Гной, отделяемое слизистой оболочки, мочу, мокроту, спинномозговую жидкость сеют в чашку Петри с 5%-м кровяным агаром (лучше использовать дефибрини-рованную баранью кровь) и в пробирку с сахарным бульоном. Для выделения стрептококков из контаминированного материала используют селективные среды (в кровяной агар и среду накопления вводят антибиотики — колистин, налидиксовую кислоту, которые подавляют рост сопутствующих микроорганизмов). Хотя стрептококки дают рост на воздухе, посевы лучше инкубировать в анаэробной атмосфере при 37 °С. Инкубация в атмосфере СО2 стимулирует рост бета-гемолитических стрептококков, не относящихся к группе А. С этими целями применяют анаэростат или эксикатор с горящей свечой. [c.110]

    С пищей бром попадает в организм человека и животных, сосредотачиваясь в спинномозговой жидкости и (в меньшей мере) в крови, почках, печени и щитовидной железе. Живое вещество играет важную роль в круговороте брома в природе и, в частности, в накоплении и перераспределении этого элемента между различными объектами неорганического мира [60]. В процессах круговорота, в деталях рассмотренных в работе [725], биосфера, гидросфера, литосфера и атмосфера находятся в непрестанном взаимодействии и единстве. [c.8]

    Вещества, применяемые при обезболивании путем введения в спинномозговую жидкость. [c.102]

    В спинномозговой жидкости и в слюне фтор определяют аналогично. [c.141]

    При заболеваниях, вызванных стафилококками, исследуют гной, раневое отделяемое, пунктаты из полостей и абсцессов, материал со слизистых оболочек, кровь, мокроту, мочу, спинномозговую жидкость в случае пищевых отравлений — рвотные массы, испражнения больных, остатки пищи при профилактических исследованиях — смывы с инструментов и оборудования, стерилизованные материалы медицинского назначения, воздух. [c.104]

    При открытых гнойных поражениях материал берут ватным тампоном после удаления верхнего слоя гноя, в котором могут находиться непатогенные стафилококки и другие микроорганизмы, попавшие с кожи или из воздуха. При наличии закрытых гнойных очагов делают пункцию и выливают гной из шприца в стерильную пробирку. Отделяемое слизистой оболочки снимают сухим тампоном. Мочу, мокроту собирают в стерильные пробирки и банки. Кровь (5 — 20 мл), взятую шприцем из локтевой вены, и спинномозговую жидкость с соблюдением правил асептики сеют у постели больного во флакон, содержащий 100 — 200 мл сахарного бульона (pH 7,2 —7,4), или на среду для контроля стерильности. Стафилококки хорошо размножаются и на простых средах, однако лучше использовать обогащенные среды, так как септицемия может быть вызвана не только стафилококками, но и прихотливыми микроорганизмами (стрептококками, анаэробами и др.). [c.104]


    При заболеваниях, вызванных стрептококками, материалом для исследования, в зависимости от локализации и формы инфекции, являются гной, кровь, отделяемое слизистой оболочки, моча, мокрота, спинномозговая жидкость, раневое отделяемое. Берут его так же, как при заболеваниях, вызванных стафилококками. При взятии материала из полости рта ополаскивание не проводят, а интервал после приема пищи должен быть не менее 2 ч. Если материал невозможно доставить в лабораторию в течение 2 ч, его помещают в транспортные среды или среду накопления (сахарный бульон, тиогликолевая среда). [c.109]

    Исследованию подвергают мокроту, гной, спинномозговую жидкость, кровь, органы трупа. [c.113]

    Бактериологическое исследование. Для выделения чистой культуры 5 — 10 мл крови сеют в сывороточный бульон (1 часть сыворотки + 3 части МПБ, pH 7,2 —7,4), в сахарный бульон или в специальную среду с дефибринированной кровью лошади и дрожжевым экстрактом. После 18 —24-часовой инкубации материал пересевают на 10%-й кровяной агар в чашку. Спинномозговую жидкость центрифугируют и осадок сеют на кровяной агар. [c.114]

    Материалами для исследования при различных формах инфекции являются кровь, моча, раневое отделяемое, кусочки пораженных тканей, спинномозговая жидкость и др. Особенности взятия материала такие же, как при стрептококковых инфекциях. Пересылать материал в лабораторию можно в любых транспортных средах или даже на сухом тампоне, но исследование желательно начать не позже 2 ч после взятия материала. [c.115]

    На основе нингидриновой реакции были разработаны методы количественного определения аминокислот, в частности метод распределительной хроматографии на бумаге, впервые внедренный в 1944 г. (А. Мартин и Р. Синдж). Эта же реакция используется благодаря своей высокой чувствительности в автоматическом анализаторе аминокислот. Впервые такой прибор сконструировали Д. Шпакман, С. Мур и У. Стейн (рис. 1.7). После разделения смеси аминокислот в колонках, заполненных специальными ионообменными смолами (сульфополистирольный катионит), ток элюента из колонки поступает в смеситель, туда же поступает раствор нингидрина интенсивность образующейся окраски автоматически измеряется на фотоэлектроколориметре и регистрируется самописцем. Этот метод нашел широкое применение в клинической практике при исследовании крови, мочи, спинномозговой жидкости. С его помощью за 2—3 ч можно получить полную картину качественного состава аминокислот в биологи- [c.42]

    Экспресс-диагностика основана на обнаружении в спинномозговой жидкости или крови больного специфического антигена, осуществляется с помощью латекс-агглютинации, ИФА, встречного иммуноэлектрофореза с групповыми преципитирующими антисыворотками. Эти методы приобретают особое значение при неэффективности микроскопической диагностики и посевов. [c.117]

    Подсчитывать частицы комплекса можно также в камерах, предназначенных для определения количества форменных элементов крови и спинномозговой жидкости (камеры Горяева и Фукс-Розентал ). Камера состоит из толстого предметного стекла с нанесенными на нем двумя поперечными прорезями, ограничивающими три плоские площадки. [c.79]

    Химическое и пространственное строение вешества определяет наличие у него биоактивности. Однако ее уровень (эффективность действия) может в значительной степени зависеть от разнообразных факторов. Большинство лекарственных вешеств должно обладать хорошей водорастворимостью, так как они переносятся в организме главным образом кровяным током, что благоприятствует созданию концентрации, достаточной для проявления фармакологического действия. Многие лекарственные вещества должны иметь хорошую липофильность и обладать способностью проникать через клеточные полупроницаемые мембраны, чтобы влиять на биохимические процессы метаболизма. Препараты, действующие на центральную нервную систему, должны свободно переходить из крови в спинномозговую жидкость и мозг, т.е. преодолевать гематоэнцефаличе-ский барьер, который защищает мозг от проникновения в него чужеродных веществ, растворенных в крови. Другим барьером для проникновения лекарственных вешеств из крови к тканям органа-мишени являются стенки капилляров. Для большинства лекарственных веществ не очень высокой молекулярной массы [c.18]

    Биофармацевтическая концепция базируется на строго научных, полученных в эксперименте in vivo данных фармакокинетики — отрасли лекарствоведения, предметом изучения которой являются процессы абсорбции, метаболизма, распределения и элиминации лекарственных веществ. Важнейшим инструментом фармакокинетического исследования является определение концентрации препаратов и их метаболитов в биологических жидкостях (кровь, лимфа, спинномозговая жидкость, экстрацеллюлозная жидкость, моча, слюна и т. д.), в тканях и органах. В этом случае о судьбе препарата, введенного в организм, легко составить схематическое представление по элементарной фармакокинетической модели, например, такой  [c.107]

    Применяют для тех же целен, что и фтивазид. Препарат хорошо всасывается из желудочно-кишечного тракта и проникает в спинномозговую жидкость. Бактериостатнческая активность при приеме метазнда выше, чем прн приеме тех же доз фтивазида. [c.364]

    Метазид—активный туберкулостатический препарат. Применяется для лечения различных форм туберкулеза, по действию близок к фтива-зиду и изониазиду, значительно менее токсичен, чем изониазид при приеме внутрь хорошо всасывается из желудочно-кишечного тракта и проникает в спинномозговую жидкость. [c.187]

    К настоящему времени эндорфины найдены в центральной нервной системе, в спинномозговой жидкости, в почках, в нервных волокнах Желудочно-кишечного тракта, в крови, плаценте и гипофизе. Для изучения распределения эндорфинов используется иммуно-цитохимическая техника и радиоиммуноанализ. Поскольку различные опиатные пептиды имеют значительное структурное сходство, стало возможным получить антитела для всей группы пептидов. Показано, что высокомолекулярные эндорфины, прежде всего, вероятно, стабильный к протеазам /3-эндорфин, коИцент Яв1У -ются в гипофизе и гипоталамусе. Энкефалины найдены преимуШествеиНо в [c.293]

    Лекарственные средства для внутриполостных, внутрисердеч-ных, внутриглазных или других инъекций, имеющих доступ к спинномозговой жидкости, а также при разовой дозе, превышающей 15 мл, не должны содержать консервантов. [c.141]

    Концентрация и осмотическое давление различных жидкостей в организме поддерживаются на постоянном уровне действием специальных осморегуляторов. Осмотическое давление растворов является следствием теплового движения молекул растворенного вещества, стремящегося занять возможно больший объем. Плазма крови, лимфа, слезная и спинномозговая жидкость имеют постоянное осмотическое давление (гипертонический раствор) в результате разности осмотических давлений внутри эритроцитов и окружающей их плазмы осуществляется движение воды из эритроцитов, идущее до выравнивания осмотических давлений. Эритроциты при этом, лишаясь воды, сморщиваются (плазмолиз). Если вводится раствор с малым осмотическим давлением (гипотонический раствор), жидкость проникает внутрь клетки эритроцит разбухает, клеточная оболочка может нарушиться, а [c.371]

    Комбинированное использование тонкослойной гель-фильтрации с электрофорезом или иммунодиффузией до настоящего времени представляет собой один из наиболее тонких методов микроанализа белков. Хансон и др. [10] разработали метод двумерного разделения, используемый для анализа белков. На первом этапе белки подвергают гель-фильтрации в тонком слое сефадекса G-200 или G-100, а на втором — электрофорезу. Они предложили прибор, в котором хроматографическую пластинку можно закреплять под углом для гель-фильтрации и горизонтально для электрофореза. В описанных экспериментах использовали стеклянные пластинки размером 30 x 30 см и толщиной 1 мм, на которые наносили слой геля сефадекса толщиной 0,5 мм. Для набухания сефадекс оставляли в 0,05 М вероналовом буферном растворе pH 8,6. Сначала проводили гель-фильтрацию, а затем в направлении, перпендикулярном первому, в течение 3 ч вели электрофорез при градиенте напряжения 10 В/см. Этот метод весьма успешно был применен для анализа сывороток крови человека, спинномозговой жидкости и гормона роста. [c.240]

    Сиаловые кислоты чрезвычайно широко распространены в при роде. Они входят в состав различных органов и тканей животных встречаются в микроорганизмах и, по-видимому, в растениях В свободном виде сиаловые кислоты присутствуют в спинномозговой жидкости слизистой оболочке желудка щитовидной железе а также в икре некоторых видов рыб . Сиаловые кислоты входят в состав олигосахари-дов молока (см. стр. 423), ганглиозидов (см. стр. 588), ряда гликопротеинов (см. гл. 21), в том числе муцинов из подчелюстной железы различных видов животных гликопротеинов кожи фетуина кислого [c.332]

    Муцинами обычно называют вязкие жидкости, которые секре-тируются различными железами млекопитающих. Имеется больн ое количество данных о выделении, разделении и изучении состава муцинов-различного происхождения, найденных в желудочном соке, ц.ейке матки, семенной жидкости, поте, спинномозговой жидкости и т. д. (0630J ы см. ). Однако в большинстве случаев муцины представляют собой слоя ные сме- [c.578]

    Менингококковую инфекцию вызывают менингококки — Neis-seria meningitidis (бактерии 3-й группы патогенности). Материалом для исследования служит отделяемое носоглотки, спинномозговая жидкость, кровь, соскоб из элементов геморрагической сыпи на коже, секционный материал. [c.116]

    Микроскопия. Микроскопическое исследование спинномозговой жидкости и крови дает возможность определить наличие возбудителя. Если спинномозговая жидкость имеет вид гноя, то мазки готовят без ее предварительной обработки при незначительной мутности спинномозговую жидкость центрифугируют и из осадка делают мазки. Окрашивают их по Граму, водным раствором основного фуксина и/или метиленовым синим. При окраске по Граму форменные элементы спинномозговой жидкости могут изменяться, что осложняет обнаружение возбудителя. Менингококки имеют вид диплококков бобовидной формы, соприкасающихся вогнутыми краями и расположенных внутри цитоплазмы лейкоцитов. Часто обнаруживается нежная капсула. При менинго-кокцемии менингококки иногда можно обнаружить в мазках крови. Для этого готовят препарат толстой капли и без фиксации окрашивают его 2 — 3 мин водным раствором метиленовой сини, лишнюю окраску смывают водопроводной водой и высушивают препарат на воздухе. На голубом фоне препарата видны окрашенные в темно-синий цвет лейкоциты, а между ними множество мелких, темно-синих кокков, расположенных в виде кучек, парно или по одному. [c.117]

    Бактериологическое исследование. Менингококк растет на специальных питательных средах с нативным белком (бульон или агар с сывороткой, асцитической жидкостью или кровью). Для исследования материала, обильно контаминированного нормофлорой (мазки из носоглотки), применяют посев на плотные селективные среды с антибиотиками (ристомицином, ванкомицином, ко-листином и нистатином). Спинномозговую жидкость лучше сеять после центрифугирования (3000 об/мин в течение 5 мин). Засевают 2— 3 капли полученного осадка на поверхность подогретой пи- [c.117]


Смотреть страницы где упоминается термин Спинномозговая жидкость: [c.288]    [c.190]    [c.33]    [c.70]    [c.285]    [c.294]    [c.574]    [c.30]    [c.134]    [c.134]    [c.191]    [c.193]    [c.195]   
Смотреть главы в:

Биологическая химия Издание 3 -> Спинномозговая жидкость

Биологическая химия Издание 4 -> Спинномозговая жидкость


Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.266 ]

Биологическая химия Издание 3 (1960) -- [ c.405 ]

Биологическая химия Издание 4 (1965) -- [ c.429 ]

Биология Том3 Изд3 (2004) -- [ c.0 ]




ПОИСК







© 2022 chem21.info Реклама на сайте