Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Легирование тантала

    В работах [1,2] было уже показано, что при легировании тантала соблюдается корреляционная зависимость между упрочнением твердого раствора и степенью искажения кристаллической решетки. Интересно сопоставить эти величины в температурной области от 8Ш°С и выше,где деформация частично контролируется диффузионными [c.160]

    Сплавы тантала. Тантал — наиболее коррозионностойкий, но и самый дорогой из тугоплавких металлов. Поэтому тантал легируют другими металлами с целью уменьшения стоимости и сохранения при этом такой же или почти такой же коррозионной стойкости, как у чистого тантала. Естественно, что легирование тантала для ощутимого снижения стоимости должно быть глубоким. [c.12]


    Есть данные (патент ФРГ № 1123836,1964 г.), что легирование тантала 18-25 ат.% Мо или 20 ат.% позволяет получить сплав, стойкий и в плавиковой кислоте. Впрочем, согласно приведенным выше данным, при таком легировании тантал теряет присущую ему пластичность. [c.48]

    Элементы УА группы (V, ЫЬ, Та) допускают глубокое легирование, что может существенно изменить их коррозионную стойкость. Впрочем, эти металлы легируют в самых различных целях. Наименее коррозионно-стойким из указанных трех металлов является ванадий. Легируют ванадий для повышения его коррозионной стойкости. Тантал - самый коррозионностойкий тугоплавкий металл, но и самый дорогой. При легировании тантала должны использоваться такие элементы, которые не снижают или в минимальной степени снижают коррозионную стойкость, но уменьшают стоимость сплава по сравнению с чистым танталом. [c.60]

    Скорость коррозии сплавов тантала в кипящей фосфорной кислоте значительно меньше, чем в кипящей серной (рис. 77), но и в этом случае при легировании тантала коррозионная стойкость заметно ухудшается. Однако влияние легирующих элементов на коррозионную стойкость тантала, в кипящей фосфорной кислоте все же значительно слабее, чем в кипящей серной кислоте (рис. 78). При этом необходимо обратить внимание на различие масштабов по ординате на рис. 75 и 78. Существенной разницы во влиянии легирующих элементов на коррозионную стойкость сплавов тантала не обнаружено (расхождение кривых при испытании сплавов различных составов ненамного больше пределов естественного рассеяния результатов коррозионных испытаний). [c.79]

    Легирование тантала и ниобия титаном особенно экономично, так как титан — самый дешевый из тугоплавких металлов (в 100 раз дешевле тантала) и самый легкий из них (плотность 4,5 г/см ). Кроме того, в отличие от других элементов (Мо, У или Zr) титан увеличивает пластичность Та и МЬ. В связи с этим по принятой и описанной выше технологии производства ниобиевых сплавов бьш изготовлен и исследован тройной сплав ЫЬ + + 20 ат.% Та + 7 ат.% Т1 (ЫЬ -ь 30 мас.% Та + 4 мас.% Т1). Предполагалось, что этот сплав по коррозионной стойкости будет мало отличаться от двой- [c.84]

    Реактивное ионное распыление. При реактивном ионном распылении протекают реакции с осаждаемым веществом. В вакуумную камеру вводят дозированное количество реактивного газа (О2, N2, СО, СН4) для того, чтобы он в зависимости от концентрации вступил в химическое соединение с распыляемым веществом или образовал с ним твердый раствор. Твердые растворы реактивных газов в металле пленки могут достигать более высоких концентраций, чем в массивных образцах, что позволяет получать пленки с необычными и полезными свойствами. Легирование тантала малым количеством азота (до 5%) является средством изменения микроструктуры пленок. [c.152]


    Легирование тантала вольфрамом, молибденом, ниобием и другими элементами приводит к снижению пластичности и деформируемости сплава. [c.256]

    При легировании тантала кислородом совместно с титаном и цирконием изменение содержания последних на величину В влияния не оказывало. [c.44]

    В химической технологии применяются теплообменники, изготовленные из самых различных металлов (углеродистых и легированных сталей, меди, титана, тантала и др.), а также из неметаллических материалов, например графита, тефлона и др. Выбор материала диктуется в основном его коррозионной стойкостью и теплопроводностью, причем конструкция теплообменного аппарата существенно зависит от выбранного материала. [c.24]

    Производство нитропарафинов описанным методом является взрывоопасным. Кроме того, аппаратура подвергается действию сильноагрессивной азотной кислоты при высокой температуре, и для изготовления аппаратуры применяют легированную сталь, ферросилид, титан и тантал (последний стоек к действию азотной кислоты при любых условиях). [c.350]

Рис. 2. Температурная зависимость твердости тантала легированного Т1 / Рис. 2. <a href="/info/26121">Температурная зависимость</a> <a href="/info/602224">твердости тантала</a> легированного Т1 /
    Продолжающееся повышение требований к чистоте металлов и расширение производства таких тугоплавких металлов, как ниобий, тантал, молибден, вольфрам, и др., и сплавов на их основе показали, что вакуумные дуговые и электро-шлаковые печи не могут полностью удовлетворить эти потребности, в основном из-за того, что в них нельзя получить существенный перегрев металла жидкой ванны над температурой плавления и выдержать ванну при этой температуре в течение времени, нужного для глубокой очистки металла от примесей и газов. Кроме того, особенности рабочего процесса вакуумной дуговой печи не позволяют полностью использовать обычные средства металлургии, такие, как легирование, применение раскисли-телей, флюсов и т. п. Поэтому последние 10—15 лет во всех крупных промышленных странах ведутся работы по созданию плавильных агрегатов, свободных от указанных недостатков. Одним из таких новых типов плавильных установок являются электронные печи. [c.234]

    НОСТЬ. По влиянию на предел прочности легирующие элеметы располагаются в определенной последовательности в соответствии со степенью искажения кристаллической решетки, т. е. еще раз подтверждается установленная ранее закономерность. Характер изменения предела текучести (00,2) тантала при растворении в нем второго компонента идентичен характеру изменения предела прочности. Наиболее эффективным упрочнителем тантала является ванадий, легирование которым приводит к резкому уменьшению параметра решетки. При введении 27 мас.% V предел прочности увеличивается от 37 до 110 кгс/мм . [c.37]

    Легирование ниобием, имеющим такие же атомные размеры, как и тантал, не вызывает изменения механических свойств. Все элементы, кроме ниобия, снижают пластические свойства, однако и при максимальной концентрации наиболее сильного упрочнителя (27 мас.% V) относительное удлинение имеет достаточно высокое значение (20 мас.%). [c.37]

    Заметное охрупчивание тантала при низких температурах наблюдается при легировании титаном. Хотя по кривым ударной вязкости сплавов [c.37]

    Результаты испытаний, представленные на рис. 80, оказались несколько неожиданными. Легирование незначительно ухудшило коррозионную стойкость тантала в азотной кислоте (для всех систем легирование примерно одинаково) легирование Ti и V не ухудшило коррозионную стойкость тантала в соляной кислоте, а легирование Nb ухудшило. [c.80]

    Для ниобия, самого дорогого металла после тантала, экономично легирование титаном. В кипящей серной кислоте ниобий устойчив при концентрации кислоты до 20% введение в сплав 20% Ti не ухудшает стойкости ниобия в этих условиях. [c.83]

    Рассмотрим теперь, каковы возможности легирования тугоплавких металлов, предназначенных для работы в азотной кислоте. При эксплуатации в кипящей концентрированной азотной кислоте допустимо содержание в сплавах тантала до 25 мас.% Nb, до 60 мас.% V и до 10 мас.% Ti. [c.83]

    Глухова А.И. и др. Сплавы ниобий -тантал, легированные платиной. - В кн.. Коррозия и защита металлов. М. Машиностроение, 1970, с. 54. [c.117]

    Стандартных и обш,епринятых кондиций на концентраты ниобия и тантала нет. Можно указать лишь на технические условия ограниченного назначения или сослаться на производственную практику. Концентраты, применяемые для непосредственного получения ферросплавов (феррониобия, ферро-тантало-ниобия), должны содержать минимальное количество Р, 5, С, 51, Т1. Наиболее вредны Р, 5, С. Повышенное содержание примесей фосфора и углерода придает стали, для легирования которой используются ферросплавы, хрупкость повышенное содержание серы вызывает красноломкость. Кроме того, сера ухудшает коррозионную стойкость нержавею-Ш.ИХ сталей. Состав некоторых концентратов приведен в табл. [c.65]


    Легирование танталовых тонких пленок. Тантал является самым распространенным материалом для тонкопленочных микроузлов, получаемых с помощью вакуумного осаждения при ионном распылении. Используют различные химические соединения тантала, в том числе окислы, обладающие хорошими диэлектрическими свойствами. Поэтому тантал может быть применен и для резисторов, и для конденсаторов. [c.151]

    Соляная кислота отличается высокой агрессивностью по отношению к большинству металлов и сплавов. Реальное применение для изготовления оборудования и деталей оборудования, подвергающихся воздействию соляной кислоты, находят лишь титан и его сплавы, никель и его сплавы, тантал и молибден, а также кремнистый чугун. Нелегированный титан обладает ограниченной стойкостью в кислоте даже при комнатной температуре (рис. 7-3) 261]]. Наличие в растворе окислителей (в частности, растворенного хлора) расширяет пределы применимости титана в соляной кислоте. Хорошей стойкостью обладает легированный палладием (0,2 масс.%) или молибденом (30 масс.%) титан. [c.103]

    В растворах соляной кислоты любых концентраций полностью устойчивы тантал (до температуры кипения) и молибден (только при комнатной температуре). Железокремнистые сплавы, содержащие более 14,5% кремния, применяются при комнатной температуре в кислоте любой концентрации сплавы, легированные молибденом (3% Мо), отличаются стойкостью в 30%-ном растворе соляной кислоты до 65 °С. [c.104]

    Ударная вязкость при легировании тантала изменяется мало, однако необходимо иметь в виду, чго результаты, полученные на тонких образцах (2 мм) при испьгганиях на удар, малопоказательны. Вязкую составляющую в изломе не определяли, были лишь построены кривые ударной вязкости сплавов Та—Ti Ta-V Ta-Nb Та—Мо и Та—W (рис. 33). Для сплавов всех систем, кроме системы Та—Ti, ударная вязкость мало изменяется с понижением температуры. Это позволяет утверждать, что как у чистого тантала, так и у сплавов Ta-V (до 28 ат.% V), Ta-Nb (до 50 ат.% Nb), Та—Мо (до 5 ат.% Мо) и Та—W (до 4 ат.% W) порог хладноломкости ниже, чем температура кипения жидкого водорода (т. е. ниже -253°С).  [c.37]

    По имеющимся данным [51, 231], наводороживание тантала в кислотах и связанное с этим охрупчивание может быть устранено контактом тантала с платиной или легированием тантала небольщими присадками — 0,1—0,3 % Р1. В этом случае преимущественное выделение водорода идет на платине, имеющей более низкое перенапряжение водорода. [c.300]

    Рассмотрены механические свойства коррозионноетойких бине ных танталовых сплавов. Проведена оценка жаропрочвнх свойств тантала и сплавов на его основе при глубоком легирования тани влемента 1У-У1 групп периодической системы. [c.183]

    Много ванадия как такового, а также в виде феррованадия используется для улучшения свойств специальных сталей, идущих на изготовление паровозных цилиндров, автомобильных и авиационных моторов, осей и рессор вагонов, пружин, инструментов и т. д. Малое количество ванадия подобно титану и марганцу способствует раскислению, а большое количество увеличивает твердость сплавов. Ниобий и тантал, как дорогие металлы, применяют для легирования сталей только в тех случаях, когда необходима устойчивость по отношению к высокой температуре и активным реагентам. Сплавы алюминия с присадкой ванадия используются как твердые, эластичные и устойчивые к действию морской воды материалы в конструкциях гидросамолетов, глиссеров, подводных лодок. Ниобий и ванадий — частые компоненты жаропрочных сплавов. Ниобий применяют при сварке разнородных металлов. VjOg служит хорошим катализатором для получения серной кислоты контактным методом. Свойства Та О., используются при приготовлении из него хороших электролитических танталовых конденсаторов и выпрямителей, лучших, чем алюминиевые (гл. XI, 3). [c.335]

    Перспективно применение НГ и его соединений в жаропрочных сплавах для самолетостроения и ракетной техники. Сплавы титана, легированные гафнием (до нескольких процентов), выдерживают нагревание до 980 . Сплавы тантала с гафнием устойчивы против окисления до 1650°. Сплавы МЬ и Та с НГ (2—10%) и У (8—10%) хорошо обрабатываются, коррозионно стойки, высокопрочны выше 2000° и вблизи абсолютного нуля. Уникальные свойства имеют жаропрочные материалы на основе карбида и нитрида гафния. Твердый раствор карбидов НГ и Та, плавящийся выше 4000°, — самый тугоплавкий керами ческий материал. Йз него готовят тигли для выплавки тугоплавких металлов и детали реактивных двигaтeлeiV 15, 16, 72, 731. [c.309]

    Ниобий И тантал используются для легирования ста, лей они входят в состав /каропрочиы.х и магнитных ста-, лей с повышенной стойкостью к коррозии. [c.268]

    В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как бьшо показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1. [c.68]

    Сплавы тантала. Высокая коррозионная стойкость тантала и эффектив-ность его применения для работы в сильноагрессивных средах не вызывают ус9мнения. Однако высокая стоимость и дефицитность этого металла препятствует его широкому применению и вьаьшают необходимость разработки способов его удешевления за счет легирования [63]. Считалось, что все [c.74]

    Рекомендации по легированию, которые приведены ниже, разработаны исходя из требования, что скорость коррозии сплава не должна превышать 0,1 мм/год, т.е. соответствовать 1 баллу коррозионной стойкости. Сплавы указанных составов предназначены для работы в кипящей кислоте эксплуатация сплавов при более низкой температуре обеспечивает дополнительный запас надежности. Выбор той или иной основы сплавов тугоплавких металлов и степени их легирования вследствие сзоцественно различающейся стойкости этих металлов во многих случаях приобретает решающее значеш1е. Конкретную стоимость юго или иного металла указать трудно, так как она непостоянна и зависит от многих обстоятельств технологического и конъюнктурного плана. В данном случае достаточно привести примерное соотношение стоимости тугоплавких металлов. Оно следующее Nb в 2 раза дешевле Та, W и Мо — в 10 раз, V — в 5 раз, Ti — в 100 раз. Однако необходимо учитьшать также и плотность тугоплавких металлов (см. табл. 1). Все указанные тугоплавкие металлы, кроме W, легче, чем Та. Весьма округленно плотность относительно тантала равна —4 для Ti, —3 для V, —2 для Nb, —1,5 для Мо, 1 для W. Следовательно, при изготовлении изделия (детали) не из тантала, а из титана его стоимость будет меньше в 400 раз, из ванадия — в 15 раз, из ниобия — в 4 раза, из молибдена — в 15 раз, из вольфрама - в 10 раз. [c.81]

    С концентрацией выше 80% нестоек и тантал). При меныцей концентрации кислоты, например 60—70%, можно для удешевления ввести в сплав 10% МЬ или 5% Т1, для работы в 50-60%-ной Н2 804 - 40% ЫЬ (10% Т1) и т.д. Таким образом, если производственная технология позволяет ограничить концентрацию Н2 804, то целесообразно использовать не тантал, а тантало-ниобиевый сплав (при некотором удешевлении его за счет легирования 82 [c.82]

    Оптимальный состав двойных тугоплавких сплавов для эксплуатации в фосфорной кислоте приведен в табл. 14. Для работы в кипящей фосфорной кислоте с концентрацией более 80% необходимо использовать только тантал, а ниобий можно применять в этой кислоте с концентрацией не более 50%. При промежуточньгх концентрациях кислоты возможно применение сплавов Ta-Nb. Ванадий, легированный танталом (10-20%), можно использовать при концентрации кислоты до 40%, а сплав V—40% Та — в фосфоркой кислоте с концентрацией до 70%. [c.83]

    С целью повышения жаропрочности молибдена разработаны различные сплавы. С точки зрения обычных представлений эти сштавы являются микролегированными углеродом, цирконием и титаном. Указанные элементы, образуя дисперсную вторую фазу (карбиды), значительно повышают жаропрочные свойства молибдена, однако микролегирование мало влияет на коррозионную стойкость (показано ниже). Изменение корро-зиошой стойкости достигается при глубоком легировании. Для молибдена такое легирование нецелесообразно, так как, по-видимому, оно должно приводить к ухудшению его технологических свойств. Кроме того, и нелегированный молибден обладает высокой коррозионной стойкостью в концентрированных кислотах — практически на уровне тантала. [c.86]

    Для небольших количеств реагентов и при ие слишком большом перепаде давлений между внутренним объемом и наружной средой для изготовления самого тигля или сосуда для помещения в него реакционного тигля используют тонкостенные металлические трубки. Кусок такой трубки (из железа, легированной стали, титана нли тантала) нужной длины сначала сильно сжимают с одного конца, иапример, большими клещами так, что получающийся плоский коиец оказывается закрытым. Его герметизируют путем электрической сварки в аргоие, пользуясь устройством, показанным на рис. 483, и получают таким образом нижний конец будущего тигля. После загрузки трубчатого тигля в сухой камере, наполненной аргоном, тем же способом герметично заваривают и верхний конец, охлаждая при этом нижнюю часть тигля с реагентами. Сходное устройство применительно к изготовлению тиглей и ампул из тантала с их последующим завариванием путем электросварки описано в работе [9]. [c.2149]

    Получение р-модификации тантала в пленках зависит от многих трудно контролируемых факторов от уровня фоновых газов, тем-пературы подложки, электростатических условий кристаллизации. Чувствительность метастабильной модификации р Та ко мнОгйм параметрам производственного процесса снижает процент выхода годных изделий. В этой связи представляет интерес применение структурно стабильных пленок а-Та со стабилизацией их электросопротивления путем легирования (рис. 54). При легировании золотом долговременная стабильность повышается (достигает 0,5% в течение 2000 ч) благодаря тому, что пути проникновения кислорода вдоль границ зерен тантала перекрыты. Перспективно легирование редкоземельными металлами. В металлургии давно применяют легирование малыми дозами (доли процента) редкоземельных металлов для улучшения кристаллической структуры основного металла [78]. Механизм действия редкоземельных металлов связан с большой теплотой образования их окислов и нитридов. Эти ме- [c.151]

    Легирование танталом повышает коррозионную стойкость титана в растворах соляной и серной кислот. Так например, при содержании 5 тантала в сплаве обеспечивается повышенная стойкость титана при 90 °С в 18%-ной HG1 и 40%-ной H2SO4 [31]. Пассивное состояние сплава в присутствии окислителей обусловлено образованием пленок TiO 2 с включением ионов тантала. [c.111]


Библиография для Легирование тантала: [c.199]   
Смотреть страницы где упоминается термин Легирование тантала: [c.306]    [c.15]    [c.160]    [c.162]    [c.353]    [c.417]    [c.79]    [c.121]    [c.108]    [c.126]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.130 , c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Легирование

Тантал



© 2025 chem21.info Реклама на сайте