Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ниобий стойкость в различных

    Данные о коррозионной стойкости различных металлов и сплавов, а также неметаллических покрытий в водных растворах формальдегида [34, 35] приведены в Приложении 1. Для сравнения там помещены соответствующие данные для растворов муравьиной кислоты, не содержащих формальдегид, а также сведения о коррозионной агрессивности метанола. Как следует из сопоставления таблиц Приложения I, достаточно стойкими к воздействию растворов формальдегида при нормальной и повышенной температуре являются такие металлы, как чистое железо и алюминий, медь, никель, свинец, серебро, тантал, титан и др. Многие из этих металлов, а также платина, ниобий и цирконий мало подвержены коррозии и в присутствии значительных количеств муравьиной кислоты. Однако большинство перечисленных материалов либо слишком дефицитны, либо по физико-механическим свойствам непригодны для изготовления производственной аппаратуры. Из числа конструкционных материалов, применяющихся на практике, достаточно стойки по отношению к формалиновым растворам, в особенности при повышенной температуре, далеко не все. С учетом практической неизбежности накопления хотя бы небольших количеств муравьиной кислоты, непригодны для работы в формалиновых средах, помимо углеродистых сталей, хромистые сплавы, а также некоторые марки алюминия, бронзы, латуни, чугуна и т. д. Напомним, что в соответствии с действующим ГОСТом по коррозионной стойкости металлы разделяются на шесть групп и оцениваются по десятибалльной шкале, причем при скорости коррозии выше 0,1 мм/год материал считается пониженно стойким. [c.30]


    Сравнительная -коррозионная стойкость титана и других тугоплавких металлов (тантала, ниобия и циркония) в различных агрессивных химических средах приводится ниже. [c.322]

    На рис. 41 и 42 представлены данные по коррозионной стойкости различных металлов в кипящей серной кислоте — среде, особенно агрессивной, в которой нержавеющая сталь совершенно нестойка, а никель-молибдено-вый сплав ("хастеллой ) стоек лишь при небольших концентрациях кислоты (см. рис 3). Данные, представленные на рис. 41, заимствованы иэ работы [38], а на рис. 42 из работ автора с сотрудниками, в которых исследовались сплавы ванадия [51], ниобия [52], молибдена [53] и тантала [54]. [c.52]

    Первые два сплава иногда легируют титаном или ниобием для повышения допустимого содержания углерода и азота. Все эти сплавы можно закалять от 925 °С без ухудшения коррозионных свойств. Благодаря тому, что они сохраняют пассивность в агрессивных средах, их коррозионная стойкость обычно выше, чем у обычных ферритных и некоторых аустенитных нержавеющих сталей, представленных в табл. 18.2. Они более устойчивы, например в растворах Na l, HNO3 и различных органических кислот. Если по какой-либо причине происходит локальная или общая депассивация этих сталей, то они корродируют с большей скоростью, чем активированные никельсодержащие аустенитные нержавеющие стали, имеющие в своем составе такие же количества хрома и молибдена [8, 9]. [c.301]

    Первые публикации о коррозионной стойкости ниобия появились в 1958 г. [42, 43]. В этих работах приведены в основном качественные характеристики, свидетельствующие о высокой коррозионной стойкости ниобия в различных агрессивных средах. [c.50]

    Для уточнения методики (главным образом для выбора необходимой длительности испытаний) испытывали ниобий с различной технологической предысторией (указана в подписи к рис. 63). При этом подтверждено, что технологический процесс изготовления ниобия (а следовательно, его структура, чистота по примесям внедрения и т.д.) практически не влияет на коррозионную стойкость. [c.67]

    Фтор реагирует с ним при обычной температуре. Реакция между Nb и ia начинается - 200°. При температуре красного каления ниобий загорается в атмосфере хлора. Начало реакции между Nb и Вгз начинается при температуре несколько более высокой, чем с хлором. Ниобий очень стоек по отношению к органическими минеральным кислотам, за исключением плавиковой и ее смеси с азотной. Концентрированная серная кислота растворяет его при высокой температуре. Растворы едких щелочей и карбонатов щелочных металлов при повышенных температурах сообщают ниобию хрупкость и растворяют его. В табл. 8 приведены данные о коррозионной стойкости ниобия в различных агрессивных химических средах. [c.40]


    Коррозионная стойкость ниобия в различных химических средах [c.40]

    Химическая стойкость ниобия в различных агрессивных средах [303] [c.556]

    В связи с вышеизложенным представляет интерес рассмотреть, как меняется коррозионная стойкость титана, молибдена и ниобия и различных по составу сплавов тройной системы титан — молибден—ниобий в широкой области потенциалов (от —0,4 до +2,4 в). Последнее иллюстрируется рис. 6 и 7. В области потенциалов активного растворения титана (рис. 6, кривая 4) наиболее эффективное действие оказывает молибден при содержании 30% молибдена в сплаве титан—10% ниобия скорость коррозии сплава снижается на 3,5 порядка (рис. 6, кривая 3 и рис. 7, кривая /), тогда как при содержании 70%) ниобия в сплаве титан—10% молибдена (рис. 7, кривая 2 она снижается на 2,5 порядка. В области перепассивации молибдена (рис. 6, кривая 6) наиболее эффективное торможение процессу перепассивации оказывает ниобий. [c.73]

    Наличие большого числа Б. различных металлов с разнообразными ценными свойствами создает возможности их применения в различных отраслях техники. Области применения Б. еще недостаточно установились и в этом направлении ведутся широкие исследования. Путем диффузионного поверхностного борирования резко повышаются твердость, износоустойчивость и коррозионная стойкость различных изделий из стали, никеля, молибдена, вольфрама и др. Известно применение Б. никеля в качестве катализатора в процессах гидрирования. Б. переходных металлов — хрома, циркония, титана, ниобия и тантала или их сплавы, благодаря их тугоплавкости, жаростойкости и жаропрочности могут применяться для изготовления деталей реактивных, двигателей, лопаток газовых турбин и т. п. Гексабориды бария, лантана, церия й др. благодаря высоким термоэмиссионным свойствам применяются в качестве материалов для катодов электронных приборов. В химич. отношении дибориды переходных металлов и гексабориды редкоземельных металлов, как правило, устойчивы против минеральных к-т, нек-рые даже при нагревании, по разлагаются расплавленными [c.228]

    Влияние различных элементов на стойкость ниобия в 20%-ной кипящей НС1 показано на рис. 65 (при меньшей концентрации кислоты влияние леги-68 [c.68]

    Из табл. 17.2 видно, что с введением в хромоникелевые стали небольших добавок ниобия и титана существенно повышается скорость переноса масс этих сталей. В этом же направлении, но в меньшей степени влияет добавка алюминия. По результатам опытов были получены эмпирические уравнения, приближенно описывающие влияние различных легирующих компонентов на скорость переноса масс. Коррозионная стойкость сталей снижается при увеличении содержания никеля, при введении ниобия и титана благоприятное влияние оказывают добавки молибдена, кремния, алюминия. [c.262]

    Пластинчатые и трубчатые абсорберы изготовляют преимущественно из пропитанного смолами графита, обладающего кроме стойкости в солянокислой среде при температуре до 200 °С еще и высокой теплопроводностью. Кроме импрегнированного смолами графита, стойкими конструкционными материалами по отношению к соляной кислоте различных концентраций при температуре вплоть до 300 °С являются тантал и ниобий. Однако танталовые абсорберы используются очень редко из-за высокой их стоимости. Иногда из тантала выполняют лишь некоторые детали абсорберов. [c.52]

    К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспоз1П1ИИ в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е при наличии на поверхности отложений. [c.160]

    Ниобий обладает также высокой химической стойкостью в различных агрессивных средах. [c.555]

    Ниобий обладает высокой химической стойкостью в различных агрессивных средах и, кроме того, отличается высокой стойкостью против воздействия расплавленных металлов, применяемых в качестве теплоносителей в реакторах. [c.323]

    В работе [52] исследовали кинетику растворения ниобиевых сплавов путем периодического, через каждые 24 ч, взвешивания (до 72—144 ч) при испытаниях в закрытых контейнерах при давлении 15 атм, а также при 185° С (только 24 ч). В качестве агрессивных сред использовали кипящие серную, соляную и фосфорную кислоты. Испытания в азотной кислоте не проводили, так как согласно литературным данным в азотной кислоте ниобий абсолютно стоек при любых температурах и концентрациях. На рис. 64 показана стойкость ниобиевых сплавов в кипящей серной кислоте различной концентрации. Расположение кривых позволяет оценить влияние легирования на коррозионную стойкость ниобия в этой среде. Очевидно, что все исследованные элементы (Ti, V, Zr, Mo), кроме Та, оказывают неблагоприятное влияние на стойкость ниобия. Стойкость ниобия в кипящей соляной кислоте может быть оценена по предельной концентрации этой кислоты, которая, как установлено, равна 16%. Тантал, как бьшо показано (см. рис. 45), абсолютно стоек в кипящей соляной кислоте до концентрации 30%. Взвешивание с точностью до 10 г практически не фиксирует уменьшения массы сплава МЬ + 15ат. %Тав кипящей 20%-ной НС1. [c.68]


    До второй половины 50-х годов основное внимание уделялось танталу, нащедшему весьма разнообразное применение в раз личных областях техники. Когда же были открыты большие запасы ниобиевых руд в США и в других странах, то положение резко изменилось, и сейчас ниобий считается одним из важнейших металлов, которому предстоит большое будущее. Достаточно сказать, что ниобий находит применение >в атомной энергетике в качестве конструкционного материала, так как обладает высокой жаропрочностью, химической стойкостью и благоприятным сечением захвата нейтронов. В Англии уже работает атомный реактор, для сооружения которого был применен ниобий. Физические свойства ниобия обусловливают также его применение в ракетной технике, реактивных самолетах, газовых турбинах и т. д. Широкое применение для этих целей найдут также сплавы ниобия с различными металлами. О том значении, которое придается сейчас иобию, свидетельствует и организация международных симпозиумов по ниобию [448]. [c.167]

    Расширяющееся применение тантала и ниобия в различных отраслях науки и техники объясняется благоприятным сочетанием свойств этих металлов. Применение тантала и ниобия в химической промышленности связано с высокой коррозионной стойкостью этих металлов во многих агрессивных средах. Большая коррозионная стойкость тантала и ниобия в сочетании с высокой устойчивостью против эрозии делает их весьма эффективнььми конструкционными материалами в химическом машиностроении. Тантал и ниобий можно сваривать точечной, роликовой, стыковой, а также аргоно-дуговой электросваркой, что позволяет широко использовать эти металлы в химической промышленности для облицовки (плакирования) материалов, используемых для изготовления химической аппаратуры [1]. Проводятся разносторонние исследования с тантало-ниобиевыми сплавами, более дешевыми, чем чистые металлы. В частности, исследована [2 —5] коррозионная стойкость сплава Та—МЬ в ряде сред. Однако многие вопросы остаются неисследованными. Некоторые из них рассматриваются в данной работе. [c.187]

    Для повышения стойкост-и ниобия к окислению и повышения его лрочностных характеристик были сделаны попытки создать двойные и многокомпонентные аплавы на основе ниобия. На р ис. 126 показаны диаграммы состояния двойные сплавов ниобия с различными элементами. [c.181]

    Наиболее важные области применения чистого ниобия — пронзводсгво жаропрочных и других сплавов, атомная энергетика и химическое ап-паратостроение. Металл используется для легирования медных, никелевых и других цветных сплавов с целью повышения их прочности н жаропрочности. В виде ферросплавов ниобнй добавляют в различные стали для придания им необходимых физико-механических свойств. Малые добавки ниобия модифицируют структуру и способствуют повышению коррозионной стойкости алюминиевых сплавов. Будучи введен в титановые сплавы, ниобий повышает их прочность и коррозионную стойкость. Небольшие присадки ниобия применяются для создания сплавов с особыми физико-химическими свойствами (с повышенной электрической проводимостью и теплопроводностью, коррозионной стойкостью и др.). [c.324]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Анодное оксидирование может быть изучено на различных металлах, лучше всего обнаруживающих эту способность в растворах, не обладающих заметным воздействием на оксидную пленку. Так, алюминий хорошо оксидируется в кислом боратном буферном растворе, титан — в растворах серной кислоты. Цирконий, ванадий, ниобий — металлы, вообще характеризующиеся высокой коррозионной стойкостью во многих средах, соответственно легко оксидируются в кислых, нейтральных и щелочных растворах. Однако введение, например, фтор-ионов резко замедляет процесс формирования оксидной пленки или даже полностью его исключает вследствие образования в качест- [c.237]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Отдельное исследование и специально поставленные эсперименты, очевидно, позволят установить причины различного влияния этих элементов на коррозионную стойкость ниобия. Пока по этому вопросу можно высказать лишь некоторые предположения. Взаимное расположение в ряду напряжений ниобия и легирующих элементов (vJxj =-1,63 ( zr - 1.53  [c.70]

    Сказанное вьше это лишь перечисление возможных объяснений влияния легирующих элементов иа коррозионную стойкость ниобия, которые в какой-то степени можно распространить и на сплавы других тз оплав-ких металлов. Как и другие тугоплавкие металлы, ниобий и его сплавы при работе в кислотах наводороживаются и охрупчиваются. Насьшхение ниобия водородом до 0,02—0,03% приводит к полной потере пластичности. Вторая фаза - гидриды - обнаруживается при большем содержании водорода (при 0,08%). Легирование ниобия различными элементами может изменить указанные значения и тем самым уменьшить степень его водородного охрупчивания. [c.74]

    Покрытия из металлов п сплавов используют в качестве антикоррозионных (хром, никель, нихром), жаростойких (ниобий, мо либден), жароэрозионностойких (вольфрам). Хромоникелевые само-флюсующиеся сплавы обладают износостойкостью, эрозионной и коррозионной стойкостью, стойкостью к окислению при высокой температуре. Оксиды (оксид алминия, оксид хрома, диоксиды циркония или титана) применяют как теплозащитные покрытия, обладающие высокой жаро- и коррозионной стойкостью, твердостью. Бориды различных металлов имеют высокую твердость и хорошую жаростойкость, силициды — высокую термо- и жаростойкость. Карбиды металлов в большинстве случаев характеризуются высокой твердостью, износо- и жаростойкостью нитриды титана, циркония, гафния — высокой твердостью, износо- и термостойкостью, устойчивостью к коррозии. [c.139]

    Металлический тантал более устойчив по отношению к различным реагентам при повышеннойтемпературе, чем ниобий. Соляная, азотная и разбавленная серная кислоты, а также царская водка не оказывают на него никакого действия даже при нагревании. Концентрированная Н2504 и НР медленно растворяют тантал вьш1е 150°. Он хорошо противостоит действию слабых растворов едких щелочей, однако концентрированные растворы их и расплавленные едкие щелочи заметно корродируют его. В табл. 11 приведена коррозионная стойкость тантала в различных агрессивных средах. Порошкообразный тантал легко соединяется с фтором будучи нагрет в атмосфере хлора горит, образуя пентахлорид. Образует химические соединения с рядом других элементов — металлов и неметаллов А1, Б, Ое, Ре, Со, 81, N1, 8п, Pt, Не, рь, Р, Сг, 2т. [c.54]

    Исследовалась коррозионная стойкость титана, а также тантала и ниобия при катодной поляризации в азотнокислых растворах при различных концентрациях HNO3 и плотностях тока 2 — ti кА/м2 [134-1361. [c.260]

    Из-за высокой химической стойкости тантал используют пррЕ создании фильер для производства искусственного волокна Соединения ванадия различной валентности применяют для окраски стекол Ниобий входит в состав спецстекол для фотообъективов Керамика на основе ЫЬгОз выдерживает температуру до 1500° С [c.22]

    Коррозионная стойкость. В настоящей книге не представилось возможным детально изложить проблемы выбора материалов для сосудов давления, работающих в условиях воздействия многочисленных специфических коррозионных сред. Из литературы, посвященной этому вопросу [1—13], особое внимание следует обратить на книги Е. Ребальда Руководство по коррозии [6] и Г. А. Нельсона Коррозионные свойства [14], где имеются сведения о скорости коррозии различных металлов в многочисленных химически активных окружающих средах. В книге Г. А. Нельсона приведены также диаграммы выбора сталей [14], стойких при работе в неорганических кислотах и в газовых средах, таких, как водород (рис. 5.1). Присутствующий в этих сталях молибден повышает сопротивление коррозии в среде водорода в 4 раза больше, чем хром, и эквивалентен ванадию, титану и ниобию при содержании до 0,1%. Такие элементы, как кремний, никель и медь, не повышают сопротивление коррозии. [c.191]

    ВАНАДИЯ СПЛАВЫ — сплавы на основе ванадия. Применяются со 2-й половины 20 в. Отличаются относительно высокой жаропрочностью при т-ре 500-—600° С, низкой плотностью, коррозионной стойкостью в жидких щелочных металлах, низким сечением захвата быстрых нейтронов, хорошей обрабатываемостью. В. с. подразделяют на конструкционные жаропрочные сплавы и сплавы со специальными физ. и хим. св-вами. К особым относятся сверхпроводящие сплавы. Конструкционные жаропрочные В. с. в свою очередь подразделяют на малолегированные технологические сплавы на основе системы ванадий — титан с различными легирующими элементами и высоколегированные и более прочные сплавы на основе систем ванадий — ниобий и ванадий — ниобий — тантал. Ванадий является хорошим растворителем многих хим. элементов, поскольку радиус его атома отличается от радиуса этих элементов незначительно. Нисходящий ряд растворимости легирующих элементов в ванадпи нри т-ре 1000° С ( 0,6 близкой к возможным [c.176]

    Мартенсит) и аустенитной основами, содержащие 1—15% V. Высокохромистые, молибденовые и ванадиевые чугуны, у к-рых содержание легирующих элементов превышает 20%, отличаются, кроме высокой абразивной износостойкости и износостойкости при сухом трении, высокой коррозионной стойкостью, а некоторые (особенно с добавками алюминия и титана) и жаростойкостью. Поэтому белые легировапные чугуны применяют для изготовления изделий, эксплуатируемых при одновременном воздействии абразивных коррозионных сред и высоких (до 700° С) т-р. В условиях сухого трения высокой износостор -костью обладают высокопрочные чугуны, в условиях трения скольжения со смазко и при граничном трении — антифрикционные чугуна. Высокопрочными чугунами, легированными медью (до 5%) и фосфором (1%), заменяют дорогостоящие бронзы, используемые в условиях граничного трения. В условиях абразивного трения применяют белые нелегированные и легированные чугуны, полученные в литом и термообработанном состоянии. Структура белых литых чугунов состоит из перлита, иногда из перлита с небольшим количеством феррита и карбидов, структура термообработанных белых чугунов — из мартенсита, аустенита и карбидов. Для восстановления изношенных стальных изделий, эксплуатируемых в условиях абразивного трения, на их поверхность наплавляют спец. легированные чугуны. Поршневые кольца двигателей внутреннего сгорания и поршневых компрессоров различного класса изготовляют в осн. из серых чугунов с повышенным содержанием фосфора, обусловливающим равномерное распределение в структуре твердой двойной и тройной фосфидной эвтектики. Для повышения износостойкости поршневых колец чугун легируют хромом, никелем, молибденом, медью, титаном и ванадием (по 0,02—0,3%), а также ниобием и танталом (до 1%). Добавки в серый чугун хрома (21—40%), сурьмы (0,01—0,3%) и [c.481]

    Влияние различных газов на химическую стойкость металлического ниобия при повышенных температурах [5.30] (плоские образцы размерами 0,10x6,3x127 мм) [c.555]


Смотреть страницы где упоминается термин Ниобий стойкость в различных: [c.38]    [c.28]    [c.428]    [c.618]    [c.624]    [c.55]    [c.65]    [c.258]    [c.272]    [c.686]    [c.738]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте