Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивное состояние металлов и сплавов

    Наиболее распространенным способом защиты от атмосферной коррозии является применение соответствующих металлов и сплавов, достаточно устойчивых в промышленных эксплуатационных условиях. Повышение коррозионной устойчивости обычных марок углеродистых сталей достигается их легированием более благородными элементами или созданием на их поверхно сти пассивного состояния. Примером получения сплавов, более стойких в атмосферных условиях, чем обычные черные металлы, является легирование последних медью, хромом, никелем, алюминием и др. [c.182]


    Точно также и адсорбционная теория, полагающая, что пассивное состояние металла вызывается образованием на его поверхности мономоле-кулярных адсорбционных слоев кислорода или окислителя, не может не учитывать ту несомненную роль, которую играют фазовые пленки для алюминиевых сплавов, нержавеющих сталей и т. п. [c.81]

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]

    Таким образом, конкурирующая адсорбция, обусловливающая пассивное состояние металла, зависит от отношения количеств активирующих и пассивирующих ионов, их заряда, потенциала электрода и состава сплава. [c.16]

    Смеси азотной кислоты и сильвинита характеризуются высоким окислительно-восстановительным потенциалом и наличием ионов хлора, что приводит к разрушению даже таких термодинамически стойких металлов, как платина. Углеродистые и нержавеющие стали разрушаются в этих условиях, на их анодных поляризационных кривых отсутствует область пассивного состояния. Никелевые сплавы с Сг, Мо, в этих средах пассивны и скорость их растворения — на 3 порядка ниже, чем у сталей. При анодной поляризации и повышении температуры сред они переходят в состояния перепассивации. Чистый никель, как и стали, в этих смесях не пассивируется. [c.18]

    В сборнике приведены результаты электрохимических исследований пассивности металлов и сплавов. Основные особенности пассивного состояния металлов объяснены на основании сопоставления электрохимического поведения металлов и их окислов. [c.2]

    Пассивным называется металл, являющийся активным в электрохимическом ряду напряжений, но тем не менее корродирующий с очень низкой скоростью. Пассивность — это свойство, лежащее в основе естественной коррозионной устойчивости многих конструкционных металлов, таких как алюминий, никель и нержавеющая сталь. Некоторые металлы и сплавы можно перевести в пассивное состояние, выдерживая их в пассивирующей среде (например, железо в хроматном или нитритном растворах) или с помощью анодной поляризации при достаточно высоких плотностях тока (например, железо в серной кислоте). [c.70]


    ПАССИВНОЕ СОСТОЯНИЕ МЕТАЛЛОВ И СПЛАВОВ [c.22]

    Питтинговая коррозия представляет один из опасных видов коррозионного разрушения, характерного для пассивного состояния металлов и сплавов. В этих случаях коррозии отдельные ограниченные участки металла растворяются со значительной скоростью, причем вся остальная поверхность может оставаться в пассивном состоянии, почти не затронутой коррозией. Это приводит к образованию глубоких поражений — точечных язв или питтингов. [c.72]

    Явление пассивности имеет большое практическое значение, так как на нем основано создание сплавов, на поверхности которых в условиях эксплуатации возникала бы стабильная пассивирующая пленка. Изучению механизма возникновения и природы пассивного состояния металлов посвящено очень много работ русских и иностранных исследователей. Еще Фарадей высказал предположение, согласно которому пассивное состояние вызывается присутствием [c.56]

    В книге дано изложение вопросов теории химической и электрической коррозии металлов. Разобрано значение кинетики катодного и анодного процесса, а также омического сопротивления в установлении общей скорости коррозии металлов и сплавов. Подробно описано влияние различных факторов (внешних и внутренних) на коррозионные процессы. Дана современная теория пассивного состояния металлов. [c.2]

    Независимо от того, какую из этих теорий считать более справедливой, наступление пассивности (и само пассивное состояние) должно быть связано с уменьшением скорости анодной реакции. Поэтому было предложено определять пассивность как состояние повышенной устойчивости металла (или сплава), обусловленное торможением анодного процесса (Н. Д. Томашев). [c.484]

    Точечная коррозия (см. рис. 3.2 в) наблюдается у металлов и сплавов в пассивном состоянии, когда коррозии со значительной [c.416]

    Интенсивность процесса эрозии, определяемая как убыль массы металла с единицы его поверхности в единицу времени, обычно растет с ростом скорости потока. В табл. 9.2 показано влияние скорости потока морской воды на скорость эрозии некоторых металлов и сплавов. Из таблицы следует, что наиболее чувствительны к увеличению скорости потока сплавы меди в случае чугуна и углеродистой стали влияние скорости потока уменьшается, а для сплавов никеля оно совсем мало. Титан стоек при действии морской воды независимо от скорости ее потока, что объясняется большой прочностью пассивирующей окисной пленки. Скорость коррозии нержавеющей стали, в отличие от других материалов, в условиях быстрого потока морской воды уменьшается, что обусловлено более легким поступлением к ее поверхности кислорода, необходимого для поддержания пассивного состояния. [c.457]

    Предположение о том, что остановка растворения в этом и других подобных случаях обусловлена появлением на поверхности химически связанного кислорода, высказал М. Фарадей. Он же применительно к такому инертному состоянию металла ввел в употребление тер-мин пассивность . К настоящему, моменту на механизм пассивирования и природу пассивных пленок установились две основные точки зрения. Согласно одной из них, торможение процессов на границе фаз металл — раствор наступает в результате образования на поверхности металла фазовой окисной пленки. Согласно другой точке зрения, пассивирование металлов и сплавов обусловлено адсорбцией на поверхности кислорода и некоторых кислородсодержащих соединений. [c.394]

    Переход в пассивное состояние характерен для Сг. N1. Т1, А1. иногда Ре и других металлов, а такхе сплавов на их основе. [c.90]

    Особенно чувствительны к щелевой коррозии нержавеющие стали, алюминиевые сплавы и другие металлы, сохранение которых в пассивном состоянии зависит от поступления кислорода в зазоры. Например, в концентрированной кислоте, в которой железо находится в пассивном состоянии, наблюдается усиленная коррозия в щелях, в которых нет условий для постоянного обновления кислоты, и ее концентрация быстро падает. Такие же явления наблюдаются при ингибиторной защите, когда в щелях концентрация ингибиторов падает до критических значений, при которых происходит не ослабление, а усиление коррозии. [c.204]

    Для простоты приводится одна анодная поляризационная кривая для щели и открытого участка поверхности сплава. Как видно из рис. 17, сплав в щели находится в активном состоянии, а на открытой поверхности — в пассивном состоянии (коррозионный потенциал им ет более положительное значение). В этих условиях между участком сплава в щели и открытой поверхностью возникают локальные токи, что приводит к сближению их потенциалов ( к, и к,). Однако в этих условиях система часто остается не полностью заполяризованной. В процессе коррозии металла в щели изменяется состав раствора (pH, концентрация ионов металла и других компонентов раствора) из-за возникающих диффузионных ограничений, что приводит к изменению хода анодной парциальной кривой для этой части поверхности. При этом может изменяться положение равновесного потенциала, Еа и значения других величин, и парциальные анодные кривые для сплава в щели и на открытой поверхности становятся разными. [c.42]


    Явление перепассивации металлов и сплавов возможно при производстве и переработке особо сильных окислителей. С коррозией металлов в услоаиях перепассивации можно бороться, применяя катодную защиту металла или вводя в коррозионную среду добавки восстановителей для сдвига потенциала металла или окислительного потенциала раствора до их значений, соответствующих пассивному состоянию металла. [c.314]

    Таким образом, изучению влияния гидродинамических ус-ловий иа пассивное состояние металлов и сплавов уделяют в последние годы больщое внимание, о чем свидетельствуют многочисленные исследования. Несмотря на то, что из-за боль-щого разброса результатов нет единого мнения по этим вой росам, все же прослеживается общая закономерность. Если металл недостаточно хорошо запассивирован, что возможно, например в начальный период действия анодной защиты, интенсивное перемещивание влияет на скорость растворения. В стационарных условиях, т. е. в условиях длительной анодной защиты, кратковременное перемещивание среды практически не изменяет защитный ток растворения [66]. [c.25]

    Такие значения потенциала сохраняются стабильными в течение определенного времени, после чего наблюдается быстрое раз- благораживание потенциала и активация металла. Сравнительный анализ анодных поляризационных кривых сплава Ti — 2% Ni и титана ВТ1-0 в исследованных растворах позволяет отметить, ЧТО потенциалы начала и полной пассивации (<рн.п. и срп.п.) сплава Ti — 2% Ni практически не отличаются от титана, а критические токи пассивации (i. p) и тока растворения из пассивного состояния (inасе ) сплава несколько выше, чем для титана. [c.43]

    В течение ряда лет авторы книги занимались научными исследованиями в области пассивности металлов. При этом изучались не только супщость явления пассивности и механизм установления пассивного состояния металлов и сплавов и не только разрабатывались новые методы исследования этого явления, но главным образом изыскивались пути и конкретные способы использования явления пассивности для повышения коррозионной устойчивости практических металлических систем. [c.3]

    Коррозионным, электрохимическим и физическим исследованиям сплавов Си — N1 посвящено много работ в связи с изучением природы пассивного состояния металлов [1] и границ химической стойкости твердых растворов [2, 3]. Установлено, что сплавы, содержащие более 60 ат. % меди, теряют свойственную никелю способность пассивироваться и в ряде коррозионных сред ведут себя подобно меди.. Область медноникелевых сплавов, в которых проявляется пассивность, приблизительно совпадает с областью существования свободных электронных вакансий в й-уровнях никеля, взаимодействие которыми, по мнению ряда авторов [1], обусловливает прочную хемосорбционную связь металла с кислородом и тем самым его пассивность. При полном заполнении ( -уровней никеля электронами меди (что происходит при содержании в сплаве более 60 ат. % меди) способность сплава к образованию ковалентных (электронных) связей с кислородом исчезает, металл вступает в ионную связь с кислородом, образуя фазовые окислы, не обладающие защитными свойствами. Скорчеллетти с сотрудниками [3] считают заполнение -уровней никеля не единственной и не главной причиной изменения химической стойкости меднопикелевых сплавов с изменением их состава. Большое значение придается свойствам коррозионной среды, под воздействием которой может изменяться структура и состав поверхностного слоя сплава, определяющего его коррозионное поведение. Этот слой в зависимости от агрессивности среды может в большей или меньшей степени обогащаться более стойким компонентом сплава, с образованием одной или нескольких коррозионных структур, что приводит к смещению границы химической стойкости сплавов. Это предположение подтвердилось при исследовании зависимости работы выхода электрона от состава сплавов до и после воздействия на них коррозионных сред (например, растворов аммиака различной концентрации). [c.114]

    Пассивное состояние металлов имеет большое практическое значение. Коррозионная стойкость многих технических металлов и сплавов часто бывает обусловлена их пассивностью. Коррозионную стойкость металлов можно увеличить, легируя их другими, более легко пассивирующимися (или облегчающими наступление пассивного состояния) металлами, или введением в электролит пассиваторов, или анодной поляризацией от внешнего источника постоянного тока. [c.111]

    Образование на поверхности металла первичной монослой-ной окисной пленки приводит к тому, что скорость растворения металла резко (в 10 —10 раз) снижается, а плотность анодного тока при этом определяется процессами перехода катионов из металла в окисел, перемещением катионов или анионов окисла через окисел, переходом катионов из окисла в раствор. Кинетика каждого из этих процессов сильно отличается от кинетики выхода катиона в раствор из мест выступов решетки при активном растворении. Однако имеется и нечто общее для электродных процессов, протекающих как из активного, так и из пассивного состояний скорость любого из этих процессов зависит от напряженности электрического поля на границе металл—электролит, снижающейся по мере роста ее толщины. При постоянном потенциале ток пассивного растворения падает во времени и после очень длительного периода (многие недели) на очень стойких сплавах достигает чрезвычайно низких значений (Ю- А/см ). Наличие на поверхности пассивного металла фазовых окислов подтверждено экспериментально. Пассивная пленка на коррозионно-стойкой хромоникелевой стали имеет толщину 30—100 А [73]. Чаще всего такая пленка представляет собой кислородное соединение металла. Пассивное состояние металла поддерживается лишь в строго определенной области потенциалов. При смещении потенциала в область отрицательнее Фляде-потенциала за-пассивированный электрод реактивируется. Пассивная пленка на [c.10]

    Металлы и сплавы, склонные к пассивации, но не самопасси-вирующиеся, могу-г быть в подходящих для этого условиях переведены в пассивное состояние анодной поляризацией и тем самым защищены от коррозии (например. Ре, сталь 1Х18Н9 в 1 2804). [c.321]

    В настоящее время переход металла в пассивное состояние чаще всего объясняют образованием на его поверхности хемосорбнрованного слоя атомов кислорода, т. е. химически соединенного с поверхностными атомами металла. При этом атомы кислорода могут покрывать как всю поверхность металла, так и часть ее. При пассивации потенциал металла сильно облагораживается, т. е. делается более положительным. Пассивированием объясняют коррозионную стойкость нержавеющих сталей (сплавов). [c.249]

    Если для пассивации стали 1Х18Н9 в 50%-ной 1 2804 при 50° С требуется анодная плотность тока г а = 0,25 мА/см , то для поддержания стали в устойчивом пассивном состоянии требуемая плотность тока составляет а = 25 мкА/см, т. е. она очень мала. Таким образом, анодная поляризация, переводящая металл в пассивное состояние, может быть использована для защиты металлов (Ре, углеродистых и нержавеющих сталей, титана и его сплавов и др.) от коррозии (табл. 44). [c.321]

    Из рассмотрения кинетики электродных процессов известно, что наличие катодных составляющи.х в бол.ьшинстве случаев приводит к усиленной коррозии сплавов или, в случае коррозии металлов с кислородной депо 1Я])нзацисй при диффузи(Знном контроле, оказывает малое в.шянне. Однако исследования И. Д, Томашова и Г. И. Черновой показали, что возможно облегчение наступления пассивного состояния хромоникелевой нержавеющей стали при легировании ее небольшими присадками [c.66]

    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]

    Вообще говоря, в морской воде в качестве окислителя могут выступать ионы НзО или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхноети металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18). [c.43]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Металл переходит в пассивное состояние, как правило, при контакте с сильными окислителями (кислород, пероксид водорода, ионы хромата, дихромата, перманганата МпО "- л др.). Однако для некоторых металлов (и сплавов на их основе лапример, Т1. А1) даже вода может служить сильным окислителем. [c.90]

    Для решения этой задачи большое значение приобретает разработка оптимальных методов поверхностного легирования, таких, как термодиффузионная обработка, электроискровое легирование, ионная имплантация, электронно-лучевая обработка, которые позволяют обрабатывать поверхности, непосредственно соприкасающиеся с рабочими средами, расширяют возможности и эффективность использования катодных покрытий. Перспективным методом поверхностного легирования металлов и сплавов является ионная имплантация. Она позволяет регулировать толщину легированного слоя, концентрацию вводимых компонентов, их распределение по глубине за счет изменения энергии и рпзы внедрения. Толщина имплантированного слоя в зависимости от энергии может составлять от 0,1 до 3 мкм. Изменение коррозионной стойкости после ионной имплантаций происходит за счет обеспечивания пассивного состояния при имплантации металлами, разупрочнения структуры, приводящего к повышению сродства поверхности к кислороду, изменения дефект-но сти решетки. При этом важно, что для повышения защитных свойств вводимый элемент может образовывать с защищаемым металлом или сплавом метастабильный твердый раствор внедрения или замещения в широком диапазоне концентраций. [c.73]

    Изменение этих величин возможно за счет изменения состава сплава (очистка от примесей, вызывающих по каким-то причинам усиление коррозии, легирование). Уменьи1ение содержания углерода в коррозионностойких сталях приводит к уменьшению возможности выпадения карбидов хрома по границам зерен прн отжиге, что позволяет избежать межкристаллитной коррозии коррозионноотойких сталей [31 ]. Уменьшение концентрации примесей фосфора также приводит к снижению межкристаллитной коррозии коррозионностойких сталей [37]. Наличие примесей в техническом магнии и алюминии, повышающих скорость катодного процесса, приводит к тому, что указанные металлы в морской воде находятся в состоянии пробоя. Очистка металлов от примесей вызывает снижение скорости катодного процесса — магний и алюминий переходят в пассивное состояние [17]. [c.46]


Смотреть страницы где упоминается термин Пассивное состояние металлов и сплавов: [c.51]    [c.383]    [c.6]    [c.60]    [c.66]    [c.43]    [c.43]    [c.204]    [c.10]    [c.31]   
Смотреть главы в:

Коррозия и основы гальваностегии Издание 2 -> Пассивное состояние металлов и сплавов




ПОИСК





Смотрите так же термины и статьи:

Металлы пассивность

Металлы сплавы

Пассивное состояние металлов

Пассивность

Пассивные металлы

Состояние пассивное

Сплавы и металлы металлов



© 2024 chem21.info Реклама на сайте