Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы дробная кристаллизация

    Второй том сборника Неорганические синтезы по своему построению не отличается от ранее вышедшего в свет перевода первого тома. Так же как и в первом томе, составители приводят в библиографии ссылки на работы преимуш ественно американских исследователей, игнорируя работы советских исследователей, что уже отмечалось редактором советского издания в предисловии к первому тому. Во второй том включено большое количество новых проверенных синтезов. Значительное место уделено описанию извлечения редкоземельных элементов из горных Пород, их разделения в смесях и дробной кристаллизации. Приведен ряд новых синтезов соединений галлия, европия, германия, титана, циркония, тория, хрома и калия описано также получение карбонилов никеля, кобальта и железа и комплексных соединений с органическими аддендами. Всего во втором томе помеш ена восемьдесят одна методика. Предметный указатель к первому и второму томам будет дан в третьем томе, перевод которого будет издан в ближайшее время. [c.6]


    Дробную кристаллизацию и дробное осаждение применяют главным образом при разделении редкоземельных и других очень близких элементов. Для получения этим методом многих редкоземельных элементов в чистом состоянии часто требуется несколько лет работы, и количество необходимых отдельных операций может иногда выражаться пятизначной цифрой [251]. [c.226]

    При выборе определенной соли для дробной кристаллизации [252—254], кроме приведенных уже выше общих положений, принимают во внимание также имеющиеся в распоряжении количества и количественные соотношения. При наличии больших количеств веществ рекомендуется проводить фракционирование с довольно легкорастворимыми солями, в случае малых количеств предпочитают использование более труднорастворимых солей. Часто применению определенного способа препятствует также стоимость реактивов. Естественно, например, что из редкоземельных элементов наиболее распространенные Ьа, Рг, N(1 или V легче получить в чистой форме, чем очень редкие, потому что первые можно выделять с невысоким выходом. Еще в недалеком прошлом примерно количественный выход и одновременно высокая степень чистоты редкоземельных элементов были достигнуты при выделении Се, Ей, УЬ, 8с [252, 253] все лантаниды были получены в достаточном количестве только с введением ионообменного метода. [c.226]

    Актиний является трехвалентным элементом, аналогом лантана, но обладает более выраженными основными свойствами и поэтому может быть частично отделен от лантана дробной кристаллизацией из сернокислых растворов. По химическим свойствам актиний близок к трехвалентным редкоземельным элементам. [c.494]

    Среди существующих методов разделения редкоземельных элементов наибольшее распространение получили ионный обмен, экстракция органическими растворителями и дробная кристаллизация. Использование комплексных соединений редкоземельных элементов обеспечило успешное развитие этих методов. При этом более эффективными (с точки зрения разделения) оказались те комплексы, в которых различие в устойчивости для отдельных редкоземельных элементов выражено сильнее. [c.579]

    К первому типу относится обширный ряд двойных солей, многие из которых нашли применение при разделении редкоземельных элементов классическим методом дробной кристаллизации, использованным еще Д. И. Менделеевым в 1873 г. Из двойных солей редкоземельных элементов группы церия в практике дробной кристаллизации нашли применение двойные нитраты и сульфаты. Метод кристаллизации двойных сульфатов особенно пригоден для разделения редкоземельных элементов на группы церия и иттрия. [c.579]


    При извлечении суммы редкоземельных элементов из минералов и при разделении суммы на цериевую и иттриевую подгруппы, а также при получении концентратов используется метод дробной кристаллизации. Это вполне отвечает возможностям данного метода, который допускает переработку больших количеств материала и характеризуется высоким коэффициентом обогащения на первых стадиях. [c.98]

    Сульфатные остатки от переработки урановой смоляной руды содержат радий и полоний. Сульфаты переводят в карбонаты кипячением с раствором соды и затем растворяют в НС1. После выделения из раствора полония, висмута, актиния и редкоземельных элементов для осаждения радия и бария раствор обрабатывают серной кислотой и получающиеся сульфаты вновь переводят в хлориды. Близкие физикохимические свойства бария и радия создают серьезные препятствия для разделения этих элементов. С самого начала развития радиевой промышленности разделение основывалось на проведении дробной кристаллизации хлоридов, бромидов или других соединений, при которой использовалась изоморфная сокристаллизация бариевых и радиевых соединений. [c.227]

    У редкоземельных элементов особенно выражена способность к образованию двойных солей с натрием, калием, аммонием, комплексных соединений с органическими оксикислотами, с азотистыми соединениями. Некоторые их комплексные соединения хорошо кристаллизуются, растворяются в воде, прочны. Классическими методами разделения редкоземельных элементов являются дробная кристаллизация, дробное осаждение, дробное разложение, дробное растворение и ионный обмен. [c.403]

    В процессе дробной кристаллизации проводят десятки, а иногда сотни и даже тысячи отдельных операций (например, при разделении редкоземельных элементов, тантала и ниобия [141 —143]), поэтому для повыщения выхода готового продукта используют все маточные растворы. [c.139]

    Вирте Г. Замечание к методике дробной кристаллизации двойных магниевых нитратов редкоземельных элементов.—Ж. анал. хим., 1954, т. 9, № 5, с. 299—303. Библ.  [c.171]

    В 1871 г. Д. И. Менделеев приписал известным в то время окислам редкоземельных элементов формулу ЬпгОз, а высшему окислу церия— СеОг, что впоследствии подтвердилось. Д. И. Менделееву принадлежит огромная заслуга в правильном выборе валентности РЗЭ. Работая по разделению солей отдельных редкоземельных элементов цериевой подгруппы, Д. И. Менделеев указал на возможность применения для этой цели метода дробной кристаллизации. Так, метод впоследствии был использован в исследовательских работах Дроссбахом в Германии, Демарсеем, Урбэном и Лакомбэ во Франции и И. И. Заозерским в России. [c.50]

    Из полученного раствора можно извлечь церий бро-матным методом (см. синтез 14) оставшийся после выделения церия раствор обрабатывают избытком щавелевой кислоты или сульфата натрия, как описано выше, осадок снова превращают в гидроокиси и последние снова растворяют в азотной кислоте. Редкоземельные элементы из монацита превращают в двойные магниевые нитраты (см. синтез 15) для предварительной фракцио-нировки. Редкоземельные элементы, выделенные из ксенотима, после полного извлечения церия можно превратить в броматы (см. синтез 17) и начать дробную кристаллизацию этих солей. [c.45]

    Наиболее распространенным методом разделения редкоземельных элементов является дробная кристаллизация. Этот метод основан на незначительной разнице в растворимости в ряду простых или двойных солей этих элементов. Для фракционирования пригодны те соли, которые не слишком легко и не слишком трудно растворимы они должны иметь заметный температурный коэффициент растворимости и дояжны быть устойчивы при повторяющихся нагреваниях и охлаждениях. Двойные нитраты магния и редкоземельных элементов наиболее часто применяются для разделения элементов цериевой подгруппы, а броматы — для разделения элементов иттриевой подгруппы. [c.53]

    Дробная кристаллизация броматов является одним из наиболее быстрых и эффективных методов предварительного разделения смеси редкоземельных элементов иттриевой подгруппы. Джемс [1] делит процесс приго- [c.62]

    Термин фракционирование применяют очень часто, понимая под этим фракционированную перегонку или ректификацию. В действительности же перегонка является лишь одним из способов, при пойощи которого может быть достигнуто фракционирование смеси. В этом широком смысле фракционирование включает любой процесс систематического разделения смеси на относительно чистые фракции. Смешение близких по составу фракций и повторение основного процесса разделения обычно также включаются в понятие фракционирования. Наиболее широко известным примером фракционирования при помощи способа разделения, отличного от перегонки, является так называемая дробная кристаллизация. Она часто применяется, например, при выделении некоторых редкоземельных элементов [17]. Более современным примером фракционирования является разделение фторидов урана с помощью диффузионных мембран [18]. С этой целью была сконструирована весьма остроумная система для объединения определенных фракций и повторного их разделения с минимальной затратой ручного труда. Систематическое фракционированное осаждение высокополимерных соединений из растворов представляет общий интерес как метод, позволяющий находить функцию распределения молекул по размерам. Отмывка загрязнений от твердых тел является также часто применяемым способом разделения, а экстракция из одной жидкости в другую неоднократно обсуждалась в литературе и применяется как способ разделения и фракционирования .  [c.12]


    Другая схема разделения и выделения осколков деления основана на последовательном осаждении сначала гидроокиси рутения (на гидроокиси железа), а затем карбонатов стронция и редкоземельных элементов [30]. Цезий, остающийся в растворе после отделения рутения, стронция и редкоземельных элементов, сооса-ждается с алюмо-аммонийными квасцами, от которых отделяется дробной кристаллизацией и окончательно выделяется в виде хло-роплатината. Очистка рутения осуществляется дистилляцией его в форме Ки04. Отделение стронция от редкоземельных элементов достигается осаждением его в виде нитрата из концентрированной азотной кислоты. Церий отделяется от прометия методом ионного обмена. [c.35]

    Элементы иттриевой подгруппы. Для препаративных целей наиболее пригодным способом оказалась дробная кристаллизация броматов [255]. Очень хорошо кристаллизующиеся броматы редкоземельных элементов МеЗ (ВгОз)з-9Н2О имеют весьма значительное различие в растворимости (с минимумом растворимости у 8т) и характеризуются благоприятным большим положительным температурным коэффициентом растворимости. Броматное фракционирование нельзя применять в присутствии Се ", так как он уже в слабокислом растворе окисляется ионом ВгОд. Кроме того, можно применять основные нитраты [256], а также диметилфосфаты [257], которые в противоположность почти всем другим солям характеризуются непрерывным уменьшением растворимости от Ьа к Ьи. [c.226]

    Получение актиния. Природным источником получения обычно применяемого изотопа актиния Ас являются урановые руды, при обработке которых актиний осаждается в фракции редкоземельных элементов. Отделение его от редкоземельных элементов является нелегкой задачей. Вследствие чрезвычайно малой концентрации актиния всегда требуется предварительное обогащение этой фракции, обычно путем дробной кристаллизации магнийнитратного комплекса, аммонийнитратного комплекса или путем дробного осаждения оксалатов, фосфатов или гидроокисей редкоземельных элементов. Из обогащенного препарата актиний выделяют хроматографическим и экстракционным методами. [c.495]

    Последующий период, до 1878 г., был периодом детального изучения свойств и способов получения отдельных соединений, определения атомных масс и т. д. В 1878 г. Мариньяк выделил новую землю, названную иттербием. В 1879 г. шведский исследователь Клеве путем дробной кристаллизации показал, что в эрбии содержатся элементы тулий и гольмий. Значительное пополнение фактического материала по химии редкоземельных элементов дали работы Ауэр фон Вельсбаха. В 1885 г. Ауэр фон Вельсбаху удалось разложить дидим методом дробной кристаллизации двойных нитратов, предложенным Д. И. Менделеевым, на два новых элемента. Их он назвал празеодим и неодим. В 1886 г. Мариньяк из минерала самарскита выделил элемент, названный позднее гадолинием. В 1886 г. Лекок де Буабодран выделил из прежнего гольмия диспрозий. В 1892 г. Лекок де Буабодран, а в 1896 г. также французский исследователь Демарсей установили спектроскопически сложность прежнего самария, из которого Демарсей и выделил европий. В 1905 г. французский ученый Урбэн, а несколько позднее, независимо от Урбэна, Ауэр фон Вельсбах выделили из прежнего иттербия соединение еще одного нового элемента. Этот элемент Урбэн назвал лютецием, а Вельсбах — Кассиопеей .  [c.130]

    Работая по разделению солей отдельных редкоземельных элементов цериевой подгруппы, Менделеев указал на возможность применения для этой цели метода дробной кристаллизации. Такой метод впоследствии был использован в исследовательских работах Дроссбахом в Германии, Демарсеем, Урбэном и Лакомбэ во Франции и И. Н. Заозерским в России [15]. [c.132]

    Еще в 1902 г. Браунер [251 на основании данных об атомных весах и о характере процесса разделения неодима и самария путем дробной кристаллизации двойных нитратов магния и редкоземельных элементов (РЗЭ) высказал предположение о существовании неизвестного элемента с порядковым номером 61. Это предположение было подтверждено в 1913 г. Мозли [434] на основании найденной им закономерности между длиной волны рентгеновского излучения и порядковым номером элемента. В период 1917—1926 гг. появились работы, описывающие попытки обнаружить элемент 61 в природе (см. обзоры [25, 42, 301,410, 5781). Большинство этих попыток оказались неудачными. Две группы ученых — Харрис, Интема и Хопкинс из Иллинойского университета [351] и Ролла и Фернандес из Флорентийского университета [491] долгое время оспаривали приоритет открытия элемента 61. Однако тщательными исследованиями других ученых и главным образом Ноддак [445], Прандтля и Гримма [478] было убедительно показано, что спектр светопоглощения раствора, в котором предполагалось наличие элемента 61, идентичен спектру искусственно приготовленной смеси соединений неодима и самария. Рентгеновские линии, приписываемые элементу 61, оказались линиями некоторых примесей (Сг, Ва и Pt). [c.108]

    Обычно валентность всех этих элементов в растворе равна трем (церий может быть также четырехвалентмым, самарий и европий — двухвалентными). Их тенденция к гидролизу не велика, хлориды и нитраты трехвалентных лантаноидов и иттрия растворимы, сульфаты плохо растворимы и имеют отрицательный те.мпературный коэффициент растворимости (см. раздел 11.4). При добавлении в раствор фторидов или растворимых оснований осаждаются нерастворимые трифториды или гидроокиси. Сульфиды в растворе не образуются. При дробном осаждении гидроокисей этих элементов происходит их частичное разделение, так как основные свойства элементов уменьшаются с увеличением атомного веса (иттрий является исключением). Редкоземельные элементы образуют в растворе большое число комплексных ионов и соединений, из них особенно прочны комплексы с клешневидными агентами. Это свойство позволило разработать эффективный метод разделения с помощью ионообменных смол, который в значительной степени вытеснил старые методы, основанные на дробном осаждении или дробной кристаллизации двойных солей. Ионы редкоземельных элементов сорбируются катионообменной смолой и элюируются раствора- [c.94]

    Как видно из выражений (П1-48), (П1-49) и (1П-50), методом дробной кристаллизации можно достичь очень высокого эффекта разделения смесей. Действительно, как уже отмечалось, дробная кристаллизация с успехом используется для глубокой очистки ряда веществ. Например, этим методом получены хорошие результаты при очистке циркония от гафния (К22гРе от К2Н Рб), при разделении редкоземельных элементов и т. д. Однако, хотя дробная кристаллизация позволяет получать до- [c.115]

    Сама постановка задачи хроматографического разделения смесей редкоземельных элементов возникла в 30-х годах нашего столетия из непосредственных запросов практики и была обусловлена необходимостью выделения индивидуальных элементов из природных редкоземельных минералов. Известные к тому времени методы разделения смесей редкоземельных элементов сводились преимущественно к дробной кристаллизации — методу, недостаточно эффективному для получения п1)епаратов высокой частоты. Впервые, по-видимому, Ланге [78], исходя из успехов адсорбционного разделения органических веществ и газов, предложил попытаться разделять смеси редких земель при помощи хроматографического адсорбционного анализа. [c.167]

    Благодаря работам Лекока де Буабодрана, Мариньяка и Клеве примерно к 1890 г. были выделены 4 редкоземельных элементов (включая элементы III подгруппы). Европий был выделен (Демарсэ, 1896) в результате более эффективной дробной кристаллизации самария. Вельсбах и Юрбен одновременно выделили (1907) дробной кристаллизацией из полученного Мариньяком иттербия (который, как было доказано таким образом, оказался смесью двух элементов), новый элемент, названный Вельсбахом кассиопеем, а Юрбеном —лютецием. Последнее название было принято международной конвенцией. [c.721]


Смотреть страницы где упоминается термин Редкоземельные элементы дробная кристаллизация: [c.508]    [c.96]    [c.50]    [c.124]    [c.155]    [c.50]    [c.50]    [c.130]    [c.267]    [c.134]    [c.163]    [c.418]    [c.130]   
Неоргонические синтезы Сборник 3 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация дробная

Элементы редкоземельные



© 2024 chem21.info Реклама на сайте