Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение измерением светопоглощения в УФ-спектре

    Методы, основанные на взаимодействии излучения с веществом. Большое значение имеют различные оптические методы анализа. Измерение поглощения света является основой фотометрии. Различают две группы фотометрических методов колориметрию и спектрофотометрию. В колориметрии сравнивают окраску исследуемого раствора с окраской стандартного раствора. В спектрофотометрии определяют спектр поглощения вещества (раствора) или измеряют светопоглощение при строго определенной длине волны. Как чисто физический метод, фотометрия применяется для анализа растворов красителей, для определения окрашенных окислов азота в газах и т. п. Измерение поглощения в ультрафиолетовой и в инфракрасной частях спектра позволило распространить эти методы на многие бесцветные растворы, не поглощающие света в видимой области. Таким путем анализируют сложные системы, содержащие органические вещества, например различные фракции перегонки нефти, витамины и др. физиологически активные вещества. Измерение поглощения в инфракрасной области используется, кроме того, для определения мути в растворах, пыли в газах. [c.18]


    Спектрофотометрический анализ основан на определении спектра поглощения или измерении светопоглощения при строго определенной длине волны, которая соответствует максимуму кривой поглощения данного исследуемого вещества. [c.244]

    В книге изложены теоретические основы и практические приемы фотометрических методов анализа (спектрофотометрии, фотоколориметрии, колориметрии) описаны общие условия фотометрического определения веществ, аппаратура и методы измерения светопоглощения растворов в видимой и ультрафиолетовой областях спектра. Приведены практические работы, иллюстрирующие применение фотометрических методов к анализу примесей и основных компонентов растворов и твердых веществ. Специальные главы руководства посвящены спектрофотометрическому определению состава и констант устойчивости окрашенных соединений, математической обработке экспериментальных данных и некоторым расчетам, встречающимся в практике фотометрического анализа. В приложении приведена библиография фотометрического определения различных элементов. Включено около 50 задач с ответами для самостоятельных расчетов. [c.2]

    Уравнения (4.5) и (4.6) выведены для монохроматического света, т. е. света определенной длины волны, который может быть выделен с помощью специального оптического устрой-ства — монохроматора. В фотоколориметре измерение интенсивности световых потоков производят не в монохроматическом, а в полихроматическом свете, т. е. на довольно широком участке спектра — в интервале длин волн 20—100 нм. В этом случае в уравнении (4.6) вместо молярного коэффициента светопоглощения ел можно использовать значения среднего молярного коэффициента светопоглощения (ё), зависящие от ширины полосы пропускания светофильтра (е-<ех). [c.180]

    Считается, что чем больше проводится измерений светопоглощения при разных длинах волн, тем лучше определяется система. Однако получаемые данные могут плохо определять систему, если выбранные длины волн находятся в области сильного перекрывания спектров или в области, где молярные коэффициенты погашения двух или большего числа частиц линейно коррелируются. В этом случае наблюдается сравнительно небольшое изменение светопоглощения при изменении концентрации, что в свою очередь приводит к проблеме корреляции параметров, являющейся одним из основных недостатков спектрофотометрического метода определения констант устойчивости [12]. Поэтому лучше выбирать такие длины волн, при которых молярные коэффициенты погашения частиц сильно различаются, либо, если это невозможно, проводить большое число измерений через равные интервалы длин волн [83]. [c.98]


    Спектрофотометрический анализ. Наиболее совершенным и сложным фотометрическим прибором является спектрофотометр. Ослабление интенсивности светового потока в спектрофотометре измеряется с помощью фотоэлементов. Однако в отличие от фотоэлектроколориметров спектрофотометры дают возможность применять строго монохроматический свет для проведения фотометрических измерений. Достигается это с помощью специальной призмы, которая разлагает белый свет в спектр, и щелевого устройства. Все это позволяет выделить очень узкий участок спектра с определенной длиной волны. Измерение светопоглощения в узком участке спектра дает более строгую пропорциональность между концентрацией исследуемого окрашенного соединения и численным отклонением показания прибора. Рассмотрим это положение на конкретном примере. [c.339]

    ОПРЕДЕЛЕНИЕ ИЗМЕРЕНИЕМ СВЕТОПОГЛОЩЕНИЯ В УФ-СПЕКТРЕ [c.178]

    В этом руководстве кратко изложены теоретические основы абсорбционных методов анализа (колориметрии, фотоколориметрии, спектрофотометрии) описаны оптические свойства окрашенных соединений в растворах, общие условия колориметрического определения веществ, аппаратура и методы измерения светопоглощения растворов в видимой и ультрафиолетовой областях спектра. Приведены практические работы, иллюстрирующие применение абсорбционных методов к анализу примесей и основны х компонентов растворов и твердых веществ. Дана краткая библиография колориметрических определений ряда элементов. Специальные главы руководства посвящены математической обработке экспериментальных данных и некоторым расчетам, встречающимся в практике колориметрического анализа. [c.2]

    Спектрофотометрический анализ, как и фотометрический, основан на законе светопоглощения Бугера — Ламберта — Бера (гл. XXV, 1), но объединяет главным образом м зтоды, основанные на измерении поглощения растворами монохроматических излучений. Преимущество использования монохроматических излучений состоит в том, что при этом повышается точность определений, измерение светопоглощения в узком участке спектра позволяет увеличить селективность и чувствительность прибора — спектрофотометра. [c.358]

    Спектрофотометрический метод анализа основан на качественном и количественном изучении светопоглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 500 ООО до 760 нм), видимой (от 760 до 400 нм) и ультрафиолетовой (от 400 до 1 нм). Задача спектрофотометрического анализа — определение концентрации вещества измерением оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома измеряют оптическую плотность желтого раствора хромата, поглощающего свет в сине-фиолетовой части видимого спектра. [c.453]

    Действительно, возможность измерения светопоглощения в узком участке спектра дает более строгую пропорциональность между общей концентрацией определяемого компонента и численным отклонением показания прибора. В этом отношении работа на спектрофотометре СФ-4 всегда точнее, чем определение на ФЭК- Однако, экспериментально показано [10], что по точно- [c.94]

    Для анализа смесей сульфита, сульфата, сульфида и тиосульфата предложен прямой метод анализа, основанный на измерении светопоглощения растворов в ультрафиолетовой части спектра [47]. Детали этого метода описаны в разделе Сульфид . Определение сульфита и диоксида серы можно провести по другой методике, также основанной на измерениях в ультрафиолетовой области [48]. В соответствии с этой методикой анализируемый раствор подкисляют раствором серной кислоты и затем измеряют светопоглощение растворов при 276 нм. Чувствительность определения сульфитов при этой длине волны низка, и для ее увеличения измерения лучше проводить при 198 нм [49]. Эта замена позволяет увеличить чувствительность определения в 4 раза и определять до 1 мкг/мл диоксида серы. Помехи определению сульфитов при 276 нм оказывают сульфиды и нитриты. При 198 нм определению сульфитов не мешают фториды, сульфаты, фосфаты, хлориды и цианиды, тогда как сульфиды, нитриты, тиосульфаты, бромиды, нитраты, тиоцианаты и иодиды имеют светопоглощение в этой области и мешают определению сульфитов. Мешающее действие этих анионов можно устранить выделением диоксида серн из подкисленного анализируемого раствора с последующим [c.587]

    Спектрофотометрические методы определения технеция основаны как на измерении светопоглощения пертехнетат-иона в ультрафиолетовой области спектра, так и на образовании окрашенных комплексных соединений технеция, находящегося в более низких валентных состояниях, с различными органическими и неорганическими реагентами. Спектрофотометрические методы, основанные [c.42]


    Фотометрические методы анализа основаны на превращении анализируемого вещества в окрашенное или нерастворимое соединение и последующем измерении светопоглощения раствора или суспензии. Методы, связанные с измерением интенсивности окраски, подразделяются на фотоколориметрию (поглощение в сравнительно широкой области спектра) и спектрофотометрию (поглощение в узких участках спектра). Методы, связанные с измерением ослабления светового потока при светорассеянии взвешенными частицами делятся на нефелометрию (измерения в отраженном свете) и турбидиметрию (измерения в проходящем свете). Фотометрические методы отличаются высокой чувствительностью и используются, главным образом, для определения малых количеств примесей в основном веществе. В химии лаков и красок эти методы находят широкое применение в анализе примесей в минеральных пигментах, мономерах, смолах и вспомогательных веществах [c.79]

    Вторая группа методов в общем более чувствительна, особенно при измерении светопоглощения в инфракрасной области спектра. Определение в виде синих ГПК часто более удобно в присутствии больших количеств железа или окрашенных в желтый цвет органических соединений, которые иногда находятся в природной или технической воде, в почвенных вытяжках и т. д. При введении восстановителя, необходимого для образования синих ГПК, же-лезо(П1), имеющее желтую, окраску и поглощающее в ближнем ультрафиолетовом спектре, восстанавливается. Далее, присутствие желтых органических соединений в некоторых материалах не мешает, так как эти соединения поглощают в коротковолновой части спектра, а концентрация синего ГПК измеряется в красной или инфракрасной области спектра. [c.74]

    Метод анализа хлорбензола в сточных водах производства диизоцианатов основан на экстракции его четыреххлористым углеродом и измерении светопоглощения в УФ-области спектра при длинах волн 272, 290 и 350 нм. Измерения осуществлялись на спектрофотометре СФ-4А. Чувствительность при больших концентрациях составляет 50, малых - 0,2 мг/л. Относительная ошибка определения при небольших концентра- [c.41]

    Спектрофотометрический анализ основан на определении спектра поглощения или измерении светопоглощения при строго определенной [c.254]

    Определение no светопоглощению церия (III) в сернокислом растворе. Измерение проводится ультрафиолетовой части спектра при Х=253,6 ммк. [c.917]

    В фотометрическом анализе рекомендуется производить измерения в спектральной области, для которой обеспечиваются наибольшая точность и чувствительность количественных определений. Если свет поглощает только раствор анализируемого окрашенного соединения, а все другие компоненты не поглощают в видимой области спектра, то оптическую плотность измеряют в максимуме светопоглощения исследуемого соединения ( акс)- Мольный коэффициент поглощения при наибольший. Это позволяет обеспечить наибольшую чувст- [c.470]

    Спектр светопоглощения соединения плутония (IV) с родамином ЗБ имеет максимум поглощения при 605 ммк и минимум при 560 ммк. Однако растворы комплекса не подчиняются закону Бера. Спектрофотометрическое определение Pu(IV) с родамином ЗБ неудобно и тем, что воспроизводимость результатов измерений низкая. Отклонения отдельных результатов достигают 30—50%. [c.177]

    Метод основан на количественном определении веществ на основании измерений интенсивности окраски или светопоглощения окрашенных соединений в видимой области спектра в соответствии с оптическим законом Бугера- Ламберта- Беера. Минимальная ошибка измерения возможна при использовании значений оптических плотностей в пределах 0,3 - 0,7. [c.209]

    Один из наиболее чувствительных методов определения йода основан на измерении светопоглощения трийодид-иона в ультрафиолетовой области спектра. Состояние йода в различных растворителях зависит от их природы [10, 11]. В растворителях, в которых не происходит сольватация, например четыреххлористом углероде, сероуглероде или хлороформе, йод имеет пурпурную окраску и спектр его аналогичен спектру йода в парообразном состоянии [10]. В растворителях, образующих комплекс с йодом, например воде, йодиде калия или этаноле, растворы имеют бурую окраску и дают спектры сольватированных молекул или молекул аддитивных соединений йода и растворителя, имеющих максимумы в видимой и большие максимумы в ультрафиолетовой области. Некоторые из этих спектров поглощения для йода в сольватирующих и несольватирующих растворителях представлены на рис. 12 и 13. При добавлении небольшого количества этанола к пурпурному раствору йода в хлороформе окраска изменяется на бурую [10]. Были выполнены исследования йода в атомарном состоянии и во многих полярных и неполярных растворителях [10, [c.239]

    Абсорбционная спектроскопия основана на изучении спектров поглощения вещества, являющихся его индивидуальной характеристикой. Различают споктрофотометрический метод, основанный на определении спектра поглощения или измерении светопоглощения (как в ультрафиолетовой, так и в видимой и инфракрасной областях спектра) при строго определенной длине волны (монохроматическое излучение), которая соответствует максимуму кривой поглощения данного исследуемого вещества, а также фотоколориметрический метод, основаиньи на определении спектра поглощения или измерении светопоглощения в видимом участке спектра. [c.28]

    Существенный недостаток полосы поглощения при830 — невыполнение для нее закона Бера. Одна из причин этого состоит в том, что разрешающая сила кварцевого спектрофотометра недостаточна для определения светопоглощения в максимуме этой полосы [560 В. М. Тараканов, 1951 г.]. Несомненное достоинство этой полосы— относительно высокий молярный коэффициент погашения ( 300), что позволяет определять до 0,02 мг/мл плутония. Кроме того, в этой области спектра менее всего сказываются помехи за счет светопоглощения других элементов. Метод определения плутония, основанный на измерении светопоглощения шестивалентного плутония, предложен В. М. Таракановым, М. В. Грошевой и 3. И. Жегуловой (1953 г.). [c.157]

    Абсорбционный спектральный анализ в ультрафиолетово видимой и инфракрасной областях спектра. Различают спектр фотометрический и фотоколориметрический методы. Спектроф тометрический метод анализа основан на измерении поглощен света (монохроматического излучения) определенной длины во. ны, которая соответствует максимуму кривой поглощения вещее ва. Фотоколориметрический метод анализа основан на измерен светопоглощения или определения спектра поглощения в пр) борах—фотоколориметрах в видимом участке спектра. [c.328]

    Ион ртути (П) легко присоединяет четыре иона цианида (см. табл. 6) и также, вероятно, довольно легко образует тетрайодо-комплекс. Однако растворы хлорида и бромида ртути (II) еще содержат в значительной степени тригалогенидные комплексы даже в присутствии большого избытка ионов данного галогенида. Это видно из результатов, приведенных в табл. 5, и отчасти из определений растворимости Гарретом [14], а также из измерений светопоглощения Фромхерцем и Кун-Ху Ли [15], если только в отличие от этих исследователей при анализе полученных спектров применить закон действия масс. [c.64]

    Детальное рассмотрение других инструментальных методов определения конечной точки при титровании с ЭДТА не является целью данной книги. Однако следует остановиться на двух вариантах спектрофотометрического метода определения конечной точки титрования. Первый вариант основан на инструментальном измерении изменения окраски металлиндикаторов. Второй вариант метода основан на измерении светопоглощения комплекса металла с ЭДТА в видимой или ультрафиолетовой областях спектра [38, 39]. Так, комплекс проявляет при длине волны 222 нм [c.229]

    Определение микро- и ультрамикроколичеств отдельных углеводородов в ничтожном количестве газов или в газах низкой концентрации, находящее применение в разных областях науки (геохимия, разведка нефти и газа, биология, радиология, медицина), осуществляется методом масс-спектрометрии [1—4], методом хроматографического анализа с применением детекторов на принципе Лаубмайера [5] или интврферомет-ричес ких детекторов [6—7] и методом измерения светопоглощения в инфракрасной области спектра [8—10]. Был разработан метод определения углеводородов путем измерения количества углекислоты, образующейся при окислении углеводородов [11]. Чувствительность метода увеличивают путем конденсации углеводородов из анализируемой газовой пробы при низких температурах [12]. Чувствительность указанных методов не превыщает 10 мл. В последнее время разработан метод определения углеводородов при помощи изменения электропроводности газов, при очень низких давлениях. Для углеводородов Сз и С4 чувствительность этого метода достигает величины 2,5-10" мл, но количество анализируемого газа составляет только 1 мл, что ограничивает возможности метода при анализе газов с ничтожной концентрацией углеводородов < 10 % (объемных) [13, 14]. [c.323]

    К преимуществам СФА относится возможность использования для аналитических целей светопоглощения в ультрафиолетовой или в инфракрасной областях спектра. Это обстоятельство существенно для расширения числа объектов, доступных для определения с помощью СФА. Использование поглощения в невидимых участках спектра позволяет также увеличить чувствительность. Так, на границе видимой части спектра хромат поглощает довольно слабо (е48о = 610), хотя эта реакция считается чувствительной. Как почти у всех желтых соединений, максимум светопоглощения лежит в ультрафиолете, причем езто = 4812. Таким образом, измерение светопоглощения при 370 ммк увеличивает чувствительность определения хрома в 8 раз. Аналогичные возможности имеются для некоторых соединений, окрашенных в синий цвет. Их ХМакс лежит часто в ближней инфракрасной части спектра, не вполне доступной для исследования на обычном спектрофотометре. 96 [c.96]

    Некоторые металлгалогенидные комплексы интенсивно окрашены, что позволяет использовать их для экстракционно-фотометрического определения элементов. Наибольшее значение имеют методы определения ниобия, молибдена, рения и железа в виде роданидов, золота в виде бромидного комплекса. Известно также несколько способов, основанных на измерении светопоглощения в ультрафиолетовой области спектра. В этом случае можно фотометрировать и слабоокрашенные, и бесцветные комплексы, например AU I4. Однако эти методы обычно менее избирательны и надежны, поэтому применяются значительно реже. Наконец, в последнее время развиваются приемы, основанные на введении в экстракт, содержащий бесцветный комплекс, какого-либо реагента, дающего с экстрагируемым элементом цветную реакцию непосредственно в органической фазе. [c.314]

    Из методов, основанных на измерении светопоглощения в ультрафиолетовой части спектра, отметим методы определения золота в виде тетрахлораурата. Циглер [852] предложил прием, включающий экстракцию золота(1П) из 6 Л/, НС1 метиленхлоридом в присутствии полиэтиленгликоля с последующим спектрофотометри-рованием экстракта при 320 нм. Закон Бера выполняется для интервала концентраций золота 2,5—30 мкг мл. Железо не мешает-вплоть до отношения 5000 1. Этот метод был применен при определении золота в рудах и продуктах цветной металлургии [853, 854] так, в работе [854] золото отделяют от Se и Те экстракцией  [c.317]

    В фотометрическом анализе определяемый компонент переводят в окрашенное или, вообще, в поглощающее свет соединение количество продукта реакции определяют по поглощению света. Во всяком фотометрическом определении главное внимание должно быть уделено выбору и правильному выполнению химической реакции образования окрашенного соединения. Эта часть операций является общей для всех фотометрических методов анализа. Конечная стадия — измерение количества (концентрации) окрашенного продукта реакции — может быть выполнена разными методами в зависимости от наличия в лаборатории приборов или от технических условий. Различают несколько способов измерения концентрации окрашенного продукта реакции. Наиболее важными из них являются а) колориметрическое определение — когда визуально сравнивают цвет или интенсивность окраски испытуемого раствора с цветом или интенсивностью окраски стандартного раствора б) спектрофотометрия — измерение светопоглощения (оптической плотности раствора) при некоторой определенной длине волны или в узком интервале длин волн. Промежуточное место занимают измерения на приборах с фотоэлементами (фотоэлектроколориметрами), снабженными светофильтрами или на приборах типа фотометра Пуль-фриха, где наблюдение ведут визуально, но в некоторой узкой области спектра. [c.232]

    Определение по собственному светопоглощению. Метод основан на спектрофотометрическом измерении светопоглощения водного, раствора хлора [164, 524] или его раствора в I4 [117, 946] в УФ-области спектра (330—350 нм). Нижний предел определяемой концентрации хлора 2-10 М (1 мкг мл). Относительная ошибка при определении 10 М хлора составляет 4%, для более низких концентраций (< 10 М) ошибка увеличивается до 30— 50% [117]. [c.68]

    Редфорд [678] проверил возможность применения 2-меркапто-4, 5-диметилтиазола в качестве реагента для определения палладия. Он установил, что при измерении светопоглощения в ультрафиолетовой части спектра (с помощью ртутной лампы и стеклянных светофильтров Вуда) чувствительность определения можно увеличить на 160%. Окрашенные растворы подчиняются закону Бера. Увеличение концентрации соляной кислоты вызывает небольшое увеличение светопоглощения, поэтому кислотность должна быть постоянной. Кроме того, было найдено, что во избежание помутнения растворов необязательно прибавлять этанол. [c.234]

    Маджумдар и Чакрабартти [377] применили для спектрофотометрического определения палладия 2-меркаптобензимидазол и 2-меркаптобензотиазол. Эти реагенты и их красные комплексы с палладием обладают интенсивным светопоглощением в ультрафиолетовой области спектра и более слабым, без четких максимумов светопоглощением в видимой области спектра. Измерение светопоглощения нужно проводить в той области спектра, в которой поглощение реагента минимально, а поглощение комплекса палладия с реагентом максимально. Преимуществом метода являются устойчивость растворов реагентов и окрашенных комплексов, широкий интервал pH и употребительная область определяемых концентраций палладия. Что касается избирательности, метод не имеет никаких преимуществ по сравнению с другими методами. [c.235]

    Фильтрофотометр является относительно недорогим прибором, посредством которого устраняется влияние посторонних примесей, когда максимумы светопоглощения этих примесей и окрашенного соединения определяемого элемента не слишком близки между собой. Действие таких приборов заключается в выделении посредством светофильтров нужного участка спектра. Для практической работы в большинстве случаев достаточно комплекта из 10—12 фильтров. Имеются визуальные приборы, но более распространены приборы, снабженные фотоэлементами и электроизмерительными устройствами для измерения фототока. ( Такие приборы называют фотоколориметрами). При надлежащем выборе источника света, светофильтра и фотоэлемента может быть выполнено огромное большинство аналитических определений невысоких содержаний искомого вещества (до нескольких процентов), если разработаны достаточно надежные химические методы. Применение этих приборов не достигает цели, если максимум светопоглощения определяемого вещества лежит в неблагоприятной для измерения области спектра. В некоторых случаях неудовлетворительная работа прибора связана с шириной полосы спектра световых лучей, пропускаемых светофильтром. Тогда вместо фотоколориметра применяют спектрофотометр. [c.161]

    Лучшими реагентами для колориметрического определения никеля являются диоксимы, так как они селективно реагируют с этим элементом. Простейший способ применения этих реагентов заключается в экстракции оксиматов никеля (II) подходящим органическим растворителем, не смешивающимся с водой, и измерении светопоглощения экстракта в видимой или близкой к ультрафиолетовой области спектра. Метод, основанный на этом принципе (см. разд. Б), разработан не так полно, как этого хотелось бы, необходимо выяснить некоторые сомнительные положения, прежде чем окончательно рекомендовать его для применения в анализе следов металлов. В итоге он может оказаться лучше, чем методы, в которых оксимы применяют вместе с окислителями (разд. А). [c.600]

    Простой метод определения рения основан на измерении светопоглощения хлороформных растворов перрената тетрафениларсония в ультрафиолетовой области спектра (при 255 мц) Чувствительность метода невелика (0,05 у Rel M для Ig/q//= 0,001). Молибден и вольфрам, присутствуя в аликвотной части раствора анализируемого образца вплоть до 20 мг, при экстракции 10 мл хлороформа не мешают определению рения. Этот метод подробно не исследован, однако известно, что олово, перманганат, перхлорат, бромид и фторид мешают определению. [c.684]

    Для градуировки фотометрического определения бензола в ультрафиолетовой области спектра были измерены экстинкции (светопоглощения) семи эталонных проб известного содержания. Предполагая, что по всей области измерения случайная ошибка постоянна зуу = onst), получили следующие оценки для уравнения линейной регрессии. [c.173]

    Определение с другими красителями. Метод основан на окислении Вг до Вг хлорамином Т или хлорамином Б, бромировании красителя выделившимся бромом и фотометрировании образовавшегося продукта непосредственно в водной фазе [50, 51, 213, 271] или в органическом растворителе после экстракции [164, 215, 217, 230]. Наивысшая чувствительность определения Вг (до сотых-десятых мкг мл) достигнута при фотометрировании продуктов бромирования трифепилметановых красителей фиолетового кислотного С, кислотного голубого О, зеленого кислотного, бриллиантового зеленого и кристаллического фиолетового. Спектры поглощения водных растворов окрашенных продуктов обычно имеют два максимума светопоглощения в области 430—490 и 620—660 нм. При этом в случае кислотного голубого О измерения оптической плотности при длине волны первого пика дают плохо воспроизводимые результаты. Поэтому фотометрировапие ведут при 640 нм, поддерживая pH на уровне [c.105]


Смотреть страницы где упоминается термин Определение измерением светопоглощения в УФ-спектре: [c.80]    [c.267]    [c.174]    [c.400]    [c.89]   
Смотреть главы в:

Определение органических загрязнений питьевых, природных и сточных вод -> Определение измерением светопоглощения в УФ-спектре




ПОИСК





Смотрите так же термины и статьи:

Измерение светопоглощения

Светопоглощение



© 2025 chem21.info Реклама на сайте