Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники как соотношения

    Величина АЕа связана с суммарной разностью потенциалов АУ между поверхностью и объемом полупроводника соотношением [246, 270]  [c.131]

    При наличии в полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дырочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве примеси имеются атомы мышьяка (45 4рЗ). При образовании связей с окружающими атомами кремния атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора 2 2р ) приводит к валентной ненасыщенности атомов 51, т. е. усиливает у полупроводника дырочную проводимость. [c.118]


    В кратком курсе нет необходимости более детально рассматривать эти соотношения. Однако следует характеризовать специфические особенности механизма электронной проводимости в полупроводниках, существенно отличного от механизма проводимости металлов. Металлы н полупроводники не только количественно сильно различаются по проводимости. Хот-я в обоих случаях ток переносится движением электронов, но в металлах это электроны электронного газа, не связанные с определенными атомами кристаллической решетки, а в полупроводниках — это электроны, вырываемые из атомов или молекул, составляющих кристаллическую решетку. Концентрация электронов, способных передавать ток в металлах, в тысячи и миллионы раз больше, чем в полупроводниках. В металлах понижение температуры, ослабляя колебания атомов, составляющих решетку, повышает проводимость и при достаточном понижении температуры (вблизи абсолютного нуля) у некоторых металлов она сильно возрастает. В полупроводниках же понижение температуры обычно уменьшает число Электронов проводимости, а следовательно, и электронную проводимость, и при достаточно низкой температуре последняя становится очень малой. [c.146]

    ЧИСЛО возможных уровней в зоне ровно в два раза больше, чем число электронов, вследствие чего она является зоной проводимости. Этим объясняется также высокая электрическая проводимость этих металлов. Существует несколько основных типов взаимного расположения энергетических зон (рис. А.62), соответствующих изолятору, одновалентному металлу, двухвалентному металлу, полупроводнику с собственной проводимостью, примесному полупроводнику и-типа и примесному полупроводнику р-типа. Соотношение энергетических зон (рис. А.62) определяет также тип проводимости твердого тела. [c.142]

    В зависимости от энергии перехода из валентной зоны в зону проводимости это число изменяется в пределах 10 —10 частиц/см. Поле двойного электрического слоя нарушает соотношение (28.2). Однако произведение числа свободных электронов на число дырок для данного полупроводника остается постоянным  [c.139]

    Рассмотренное строение двойного слоя характерно для собственных полупроводников, в которых нет ни объемных примесей (добавок), ни так называемых поверхностных состояний, обусловленных чаще всего адсорбцией чужеродных атомов. Часто полупроводник в качестве примеси содержит атомы такого вещества, благодаря которому резко увеличивается число свободных электронов п. Такие добавки называются донорами электронов. Для германия такой добавкой служит мышьяк. Поскольку произведение пр в присутствии доноров электронов остается постоянным [уравнение (28.3)1, то увеличение п приводит к соответствующему уменьшению числа дырок р--=К 1п. Поэтому проводимость таких примесных полупроводников п-типа осуществляется в основном за счет свободных электронов в зоне проводимости. Если же атомы примеси резко увеличивают число дырок в валентной зоне, то растет дырочная проводимость и соответственно уменьшается число свободных электронов п = Кз/р- Такого рода примеси называются акцепторами электронов, а полупроводники с дырочной проводимостью — полупроводниками /7-типа. Акцепторами электрона для германия служат атомы галлия. В присутствии примесей соотношение (28.2) в объеме полупроводника уже не остается справедливым. Вместо него следует записать [c.141]


    Рассмотренные теоретические соотношения представляют интерес не только мри изучении строения двойного электрического слоя на типичных полупроводниках. Большая группа металлических электродов, таких, как алюминий, тантал, ниобий, титан и др., в водных растворах покрывается толстым слоем фазовых окислов, обладающих полупроводниковыми свойствами. Поэтому изучение строения границы полупроводник — раствор может оказаться полезным при исследовании строения двойного слоя на таких электродах. [c.142]

    Соотношение между составляющими Дгр и общего перенапряжения г определяется величинами емкостей плотного слоя Сг и поверхностного слоя в полупроводнике С , поскольку [c.294]

    Соотношение токов обмена и Гр определяется положением уровня Ферми в полупроводнике и равновесным потенциалом (Е ) окислительно-восстановительной системы. При этом ток оказывается тем больше, чем более отрицательное значение имеет Е и чем ближе к зоне проводимости располагается уровень Ферми. Последний эффект достигается введением в полупроводник доноров электронов (например, введением примеси Аз в Ое). Введение в полупроводник примесей акцепторов, наоборот, приводит к росту д и уменьшению 1%. Таким образом поляризационная характеристика для реакции (I) на полупроводниковом электроде оказывается весьма сложной и зависяш,ей от многих факторов. Ограничимся поэтому рассмотрением упрощенного случая, когда Д ф 0, и При этих условиях из уравнения (57.10) получаем [c.295]

    В присутствии примесей соотношение (28.2) в объеме полупроводника уже не остается справедливым. Вместо него следует записать [c.150]

    При высоких температурах это соотношение выполняется, при низких большую роль по сравнению с собственной играет так называемая примесная электропроводность. Атом примеси может отдавать свой электрон (быть донором). Если энергетический уровень электрона примеси окажется вблизи от верхней зоны, то электрон может от примеси перейти в верхнюю зону и превратиться в электрон проводимости. Такие полупроводники называются полупроводниками /г-типа, или электронными. [c.518]

    Отличие границы металл—полупроводник от границы металл— металл заключается в том, что этот слой распространяется в полупроводнике на значительную глубину (10 —10 см). Это объясняется малой концентрацией зарядов. Обычно значение контактного потенциала (а следовательно, и скачка потенциала) составляет величину порядка 1В. Примем, что двойной слой представляет собой плоский конденсатор. Тогда между зарядом (д), скачком потенциала (ф) и расстоянием между обкладками (х) должно соблюдаться соотношение [c.520]

    Сложные оксидные и сульфидные соединения с соизмеримым соотношением компонентов, а также полупроводники хроматы [c.440]

    Для того чтобы получить представление о размере добавок, необходимых для приготовления полупроводника того или иного типа, укажем на следующее. Если на 100 ООО ООО атомов Ge ввести 1 атом As, германий приобретает характер /г-полупроводника. Введение на такое же число атомов Ge одного атома В переводит его в р-тип. В весовых соотношениях это, например, для бора дает 1 г бора на 700 т германия. [c.458]

    Полупроводниковыми свойствами помимо элементарных веществ отличаются также некоторые простые соединения, а именно оксиды, сульфиды, селениды, фосфиды, аренды и т. п. соединения некоторых металлов. В этом случае на характер полупроводимости влияет отступление от стехиометрических соотношений в составе соединения. Так, например, избыток металла придает соединению электронную проводимость, а, наоборот, недостаток металла — дырочную проводимость. Так, регулируя состав соединения, можно получить полупроводники п-типа (с преобладанием электронной проводимости) и р-типа (с преобладанием дырочной проводимости). [c.206]

Рис. 8.17. Соотношения энергий между валентной зоной, зоной проводимости и уровнем Ферми а — в изолированных полупроводниках п- н р-типов б —в полупроводнике, содержащем сформированный р—л-переход. Рис. 8.17. <a href="/info/1326594">Соотношения энергий между</a> <a href="/info/1866">валентной зоной</a>, <a href="/info/2501">зоной проводимости</a> и уровнем Ферми а — в изолированных полупроводниках п- н р-типов б —в полупроводнике, содержащем сформированный р—л-переход.
    При каждой температуре в данном полупроводнике будет существовать определенное количество электронов и дырок (электронных вакансий) и сохранившихся ст-связей. Эта соотношение концентраций можно передать уравнением константы равновесия  [c.429]

    Большинство соединений полупроводникового типа обладает значительной широтой области гомогенности, и преобладание вакансий по неметаллу делает их п-полупроводниками, а преобладание вакансий по металлическим атомам приводит к образованию полупроводников р-типа. Точные стехиометрические соотношения компонентов дают минимальное значение электрической проводимости. На рис. 208 схематически показано изменение электросопротивления ZnS в зависимости от наличия тех или иных вакансий. [c.435]


    В случае примесных полупроводников, пока содержание примесных атомов невелико, остаются в силе основные соотношения, полученные для собственно полупроводников. С ростом содержания примесей поведение системы полупроводник— раствор уже не может быть описано приведенными уравнениями и зависит от природы примесных атомов. Так, в пределе для примесного л-полупр6 -водника, особенно ири высокой плотности поверхностных состояний, электрические свойства границы его с раствором приолнжаются к свойствам системы металл — раствор. [c.275]

    G. Некоторые полезные аппроксимации. Принимая различные аппроксимации для оптических свойств, из полученных выше выражений можно получить много полезных соотношений. Так, для некоторых диэлектриков и полупроводников в значительной области спектра показатель преломления и можно считать константой, а показатель поглощения k — малым. Далее, при нормальном падении os0 —1, а sin 0 =0. Уравнения (61а), (616) вместе с (53) и (55 дают в этом случас [c.460]

    При наличии В полупроводниковых материалах примесей соотношение числа электронов и дырок может изменяться, т. е. может усиливаться или дь[рочная, или электронная проводимость. Предположим, что в кристалле кремния в качестве нримсси имеются атом[,1 мьпиьяка (4.s 4p ), При образовании связей с окружаю1и,ими атомами кремния As Sp ) атомы мышьяка используют четыре своих электрона. Пятый же электрон сравнительно легко возбуждается и переходит в зону проводимости. Таким образом, примесь мышьяка усиливает у кремния электронную проводимость. Наоборот, введение в кристалл кремния атомов бора (2s 2p ) приводит к валентной ненасыщенности атомов Si, т, е. усиливает у полупроводника дырочную проводимость (рис. 69). В зависимости от преобладания того или иного вида проводимости различают полупроводники л-типа и полупроводники /)-ти1га. [c.109]

    Чапмена (см. 22). Таким образом, если в объеме полупроводника справедливо соотношение (28.2), то на расстоянии х от границы с раствором [c.140]

    Соотношения (57.10) — (57,14), полученные феноменологическим путем, можно обосновать на основе теории реорганизации растворителя, Как вытекает из этой теории, вероятность квантовомеханического перехода электрона из полупроводника на реагирующую частицу в растворе пропорциональна произведению р(е)л(е)ехр[—ир,(е)/кТ, где р(е) — плотность электронных уровней (плотность состояний электрона). В металлах вблизи уровня Ферми p(e) si onst, а потому уровень е, обеспечивающий наиболее вероятный переход электрона, определяется максимумом произведения п(е) ехр 1— 7д(е)/АЯ (см, 56), Для полупроводниковых электродов в конкуренцию вступает третий фактор —р (е), который равен нулю в запрещенной зоне и резко возрастает при переходе в валентную зону или в зону проводимости. Так, например, в зоне проводимости [c.295]

    В. Брэттен и Г. Гарретт предположили, что распределение свободных электронов и дырок в поле двойного слоя полностью аналогично распределению ионов 1,1-валентного электролита в теории Гуи — Чапмена (см. 22). Таким образом, если в объеме полупроводника справедливо соотношение (28.2), то на расстоянии х от границы с раствором [c.148]

    При наличии у атомов вещества свободных электронов (металлы, полупроводники) появляется особый вид диа- и парамагнетизма, когда действием внешнего магнитно1о поля спиновые магнитные моменты свободных электронов ориентируются, вследствие чего возникает парамагнетизм электронного газа. При наложении внешнего магнитного поля хаотически движущиеся электроны начинают перемещаться по замкнутым орбиталям, что вызывает Диамагнетизм. Соотношение диа- и парамагнетизма для различных металлов неодинаково. Так, у щелочных металлов преобладает парамагнетизм, а у сурьмы и висмута —диамагнетизм. При малых концентрациях свободных электронов (полупроводники) магнитная восприимчивость существенно зависит от температуры, при высоких концентрациях (металлы) — почти не зависит от нее. [c.192]

    Некоторые элементарные металлоиды отличаются полупроводниковыми свойствами. Эти свойства обусловлены особым состоянием электронов в кристаллической решетке полупроводников. Каждый атом металлоида в кристалле связан с другими атомами ковалентной связью. В кристаллах полупроводников валентные электроны закреплены в атомах непрочно и под влиянием нагревания или облучения могут, возбуждаясь, отрываться от связываемых ими атомов и свободными уходить в междуузлия решетки. Наличие свободных электронов в кристаллах металлоидов сообщает им некоторую электронную проводимость. При переходе электрона в свободное состояние у данного атома остается свободная орбиталь или так называемая д ы р к а . Эта дырка может заполниться при перескоке валентного электрона соседнего атома, в котором тогда возникает новая дырка. Если при наложении электрического поля свободные электроны будут передвигаться к положительному полюсу, то дырки будут передвигаться к отрицательному полюсу. Это передвижение дырок, равносильное передвижению положительных зарядов, сообщает кристаллам металлоидов еще так называемую дырочную проводимость. В совершенно чистом полупроводнике в каждый данный момент число дырок равно числу свободных электронов. Однако вследствие того, что подвижности электронов и дырок различны, значения электронной (п) и дырочной (р) проводимости в общей электропроводности чистого металлоида (значение которой очень невелико) не равны друг другу. Соотношение между числами свободных электронов и дырок в кристалле металлоида можно изменить, если в металлоид ввести даже очень незначительную примесь другого металлоида или, наоборот, металла. Пол у проводимость отличается от обычной металлической электропроводности не только своей малой величиной. Она увеличивается с повышением температуры и сильно зависит от освещения полупроводника. Наиболее же существенным признаком полупрово-димости является крайняя чувствительность к наличию примесей даже в самых ничтожных количествах. [c.44]

    Фотоэффектом называется испускание электронов металлами и полупроводниками под действием света. Согласно волновой теории света энергия Е вылетающих электронов (фотоэлектронов) должна быть пропорциональна освещенности. Одиако опыт показывает, что энергия Е от освещенности не зависит. Оказалось, что максимальная энергия < ютоэлектронов Емлкс выражается следующим уравнением (соотношение Эйнштейна).  [c.18]

    Общим для элементов подгруппы мышьяка является существование всех халькогеиидов состава Э2Х3, отвечающих правилу формальной валентности. Халькогениды Э2Х3 можно получить как непосредственным сплавлением компонентов, взятых в стехиометрических соотношениях, так и пропусканием сероводорода через подкисленные (во избежание гидролиза) растворы их солей. Все эти халькогениды являются типичными полупроводниками, причем и ширина запрещенной зоны, и величина удельного сопротивления закономерно уменьшаются в рядах соединений Аз—5Ь—В и [c.295]

    Нитриды железа, кобальта и никеля в отличие от нитридов предшествующих d-элементов фазами внедрения не являются. Об этом свидетельствуют их низкая термическая устойчивость и способность к последовательной диссоциации при иагревании с отщеплением азота и образованием все более бедных азотом соединений. Склонностью к термической диссоциации с последовательным отщеплением летучего компонента обладают также фосфиды и арсениды, причем первые — в большей степени. Для стибидов это свойственно в меньшей степени в силу небольшой летучести сурьмы. Фосфиды, арсениды и стибиды получают прямым синтезом из компонентов в эвакуированных и запаянных ампулах. Состав продукта зависит от исходного соотношения компонентов, температуры и давления пара летучего компонента в ампуле. Эти соединения разнообразны по составу, однако наиболее типичные фазы Э3П, Э2П, ЭП и ЭП. . Для кобальта и никеля известны фосфиды ЭР3. Высшие фосфиды ЭРз и ЭРз, а также арсенид FeAsj — полупроводники, остальные пниктогениды обладают полуметаллическими и металлическими свойствами. [c.407]


Смотреть страницы где упоминается термин Полупроводники как соотношения: [c.353]    [c.380]    [c.116]    [c.196]    [c.411]    [c.453]    [c.199]    [c.353]    [c.274]    [c.256]   
Гетерогенный катализ (1969) -- [ c.225 , c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники



© 2025 chem21.info Реклама на сайте