Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газов горючих газов

    Для очистки конвертированного газа от окиси углерода применяют абсорбцию медноаммиачными растворами, отмывку жидким азотом и метанирование. Наибольшей опасностью отличается метод промывки газа жидким азотом, что обусловлено возможностью образования в аппаратуре взрывоопасных смесей горючих газов с кислородом, попадающим с азотом из системы воздухо-разделения при нарушениях режима ее работы, а также с конвертированным газом при нарушении дозирования воздуха, подаваемого на конверсию. [c.22]


    Приведенные данные свидетельствуют о целесообразности применения ионитов прежде всего для глубокой очистки аспирационных газов с содержанием примесей до 1 г/м , глубокой санитарной доочистки отходящих газов, очистки природных горючих газов. [c.84]

    Очистка промышленных горючих газов в Советском Союзе может дать значительное количество сероводорода, пригодного для получения серной кислоты. При этом коэффициент использования серы сероводорода достигает 95—97%, а стоимость серной кислоты намного ниже, чем при получении ее из колчеданной или элементарной серы [57]. [c.49]

    Использование в этих процессах тепла атомных реакторов имеет безусловную перспективу. Газификация угля является одним из первых крупнотоннажных химических процессов, которые стали объектом для использования тепла атомного реактора [635, 636]. Газификация угля с естественной влажностью, без сушки и брикетирования, дает возможность обойтись без подвода пара и газифицировать угольные шламы, получаемые при гидравлической добыче. Газификация угля с использованием тепла атомного реактора привлекательна и тем несомненным технологическим преимуществом, что, как видно из рис. 8.25, газогенератор для использования тепла может быть любого типа, причем возможно использование твердого горючего различных видов. Что же касается оборудования для улавливания золы, смолы, конверсии оксида углерода, очистки газа от диоксида углерода, то оно может быть однотипным при использовании различного типа газогенераторов. Как видно из схемы, представленной на рис. 8.25, вся аппаратура и мащины, касающиеся конверсии оксида углерода, очистки газа, его разделения и компрессии не требуют никаких технических корректив по сравнению с ныне принятыми в промыщленности. [c.433]

    Аппараты и трубопроводы, предназначенные для вредных веществ, горючих газов и жидкостей, а также систем, работающих под вакуумом, после каждого ремонта и в случаях их разгерметизации должны подвергаться пневматическому испытанию на герметичность (с определением снижения давления). Испытания на герметичность проводят инертным газом. Допускается использование для этих целей воздуха, если аппараты или трубопроводы не имеют футеровки и были подвергнуты тщательной очистке от остатков указанных веществ. [c.119]

    Для сожжения газа на окиси меди применяют трубки из тугоплавкого стекла, имеющие внешний диаметр 15 мм и длину около 160 мм. Трубки помещают внутри электрических печей 11, в которых поддерживается соответствующая температура. В приборе в общей сложности имеются три трубки для сожжения газа одна для водорода и окиси углерода, другая для метана, а третья для очистки от горючих газов азота, которым промывают всю поглотительную систему. [c.56]


    В печах пересыпного типа в рабочем пространстве одновременно с прогревом материала идет процесс газификации топлива. Этот процесс необходим в печах, в которых осуществляется восстановление веществ из окислов (например, восстановление железа из руды в доменных печах), и связан с наличием в колошниковых газах горючих газов —окиси углерода и водорода. Колошниковый газ доменных печей (доменный газ) после соответствующей очистки от пыли используется как топливо для печей и котлов газы от чугунолитейных вагранок и других пересыпных печей получаются с весьма малой теплотой сгорания и использовать их сложнее, но возможно. [c.217]

    Природный газ -> Горючий газ для производства энергии Первичная химическая обработка газа очистка от серы - сера перегонка газойля -> бензин отделение гелия - гелий Синтез газов  [c.41]

    Опасности других способов очистки от двуокиси углерода связаны с возможностью выбросов больших объемов взрывоопасных, и токсичных газов в помещения или атмосферу, их загораний п взрывов в смеси с воздухом. Это обусловлено большими объемами горючих газов, находящихся в аппаратуре и трубопроводах лод высоким давлением. [c.25]

    В установках очистки газа от двуокиси углерода методом водной промывки основная опасность связана с сильной коррозией аппаратов и трубопроводов, что в ряде случаев приводит к разгерметизации систем и утечкам горючих газов. [c.25]

    Для очистки выхлопных нитрозных газов до санитарных норм широко применяют каталитическое восстановление окислов азота, используя для этого природный и другие горючие газы. [c.45]

    ПО. Изготовлены ли компрессоры, газодувки, вентиляторы, очистное оборудование для очистки горючих газов и пыли в исполнении, исключающем возможность искрообразования ( 283 Правил пожарной безопасности). [c.275]

    Очистка и осушение газов Газы перед использованием обычно очищают и сушат. Жидкие осушающие или очищающие вещества помещают в промывалки для газов, а твердые — в осушительные трубки, В первом случае газ пропускают в трубку, конец которой опущен в осушительную жидкость, Выделяющиеся ядовитые или вредные газы должны быть поглощены или выпущены под тягу. Однако горючие газы не следует выпускать под тягу. [c.230]

    Для использования физического тепла газа в верхней части газогенератора устанавливается пароперегреватель или часть поверхности нагрева котла-утилизатора. Из газогенератора газ направляется в котел-утилизатор 14. На установках ГИАП применяется прямоточно-сепарационный котел конструкции Бюро прямоточного котлостроения. В котле-утилизаторе при использовании физического тепла газа получают пар 0.5—0,8 кг/нм сухого газа давлением 23 ат. Водяной пар из части котла-утилизатора, расположенной в верху газогенератора, направляется в сепаратор 15. Из сепаратора пар с давлением 23 ат по линии IV идет на сторону, а с давлением 2,3 ат ло линии V для дутья. Газ в котле-утилизаторе охлаждается до 250—300° и из котла направляется в батарею циклонов 16 для очистки газа от пыли. Из циклонов газ поступает в мультициклон 17 (с элементами диаметром 100—150 мм), который установлен для максимально возможного улавливания пыли — уноса в сухом виде. Степень улавливания пыли в этих аппаратах достигает 90% и более. В то] случае, когда улавливаемая в циклонах и мультициклонах ныль содержит большое количество горючего и может быть использована для сжигания, она пневмотранспортом подается на ТЭЦ. В противном случае пыль через шламовые мешалки 20 сбрасывают в отвал. Затем газ проходит гидрозатвор — барботер 18, где он частично очиш ается от пыли и охлаждается до 60—80°. Для дальнейшего охлаждения и очистки от пыли газ поступает в скруббер 19 каскадного типа. После скруббера газ с содержанием ныли 0,3—1,0 г/кж очищают в дезинтеграторах—промы-вателях 22, которые расположены последовательно. Содержание пыли в газе, выходящем из дезинтеграторов, равно 5—10 мг нм . Дезинтеграторы с большим успехом могут быть заменены электрофильтрами, работающими со значительно меньшим расходом электроэнергии и со значительно большей степенью очистки. После дезинтеграторов газ проходит каплеуловитель 23 и далее через газодувку 24 направляется потребителю. [c.264]

    Для предотвращения, распространения горючих газов по территории ГПЗ на канализационных сетях через 250 м, а также на выпусках из зданий и установок должны быть установлены колодцы с гидрозатворами, конструкции которых должны обеспечивать удобство их очистки и ремонта. Высота жидкости, образующая затвор, должна быть не менее 0,25 м. [c.151]

    В промышленности абсорбция с последующей десорбцией широко применяется для выделения из газовых смесей ценных компонентов (например, для извлечения из коксового газа аммиака, бензола и др.), для очистки технологических и горючих газов от вредных примесей (например, при очистке их от сероводорода), для санитарной очистки газов (например, отходящих газов от сернистого ангидрида) и т. д. [c.590]


    Сероводород содержит 94% серы. Его извлекают из промышленных II природных горючих газов. Концентрация в них сероводорода колеблется в широких пределах (0,1—6%). При очистке этих газов можно получить концентрированный сероводород и переработать его II серную кислоту. [c.111]

    Наиболее распространенным способом очистки горючих газов от сероводорода является промывка их мышьяково-содовым раствором. [c.203]

    Из большого числа методов очистки газов от сероводорода широкое распространение получили в Советском Союзе три мокрых метода мышья-ково-содовый, вакуум-карбонатный и моноэтаноламиновый. При мышьяково-содовом методе сероводород в процессе извлечения окисляется, в результате чего побочным продуктом очистки газа является элементарная сера. При очистке газов вакуум-карбонатным методом в качестве побочного продукта получается сероводородный газ, содержащий около 90% сероводорода. При очистке горючих газов моноэтаноламиновым методом из газов извлекается одновременно сероводород и углекислота. [c.356]

    Смеси, содержащие до 5—6% О2, вполне пригодны для отдувки большинства горючих газов, у которых У=11—13%. Однако их нельзя рекомендовать для продувки аппаратов, заполненных ацетиленом или водородом. В этом случае содержание кислорода в образующихся смесях будет примерно равно величине У.. При случайных отклонениях содержания кислорода в хвостовых газах от среднего значения, а также в том случае, когда температура продуваемого аппарата выше комнатной, образующиеся смеси могут оказаться горючими. При этом возникает необходимость в сложной и дорогой операции очистки хвостовых газов от кислорода. [c.67]

    Необходимо добиваться, чтобы постоянные сбросы горючих газов и паров в факельную систему отсутствовали. Однако на практике это требование часто ле выполняется. Так, на установках каталитического риформинга и гидроочистки постоянно сбрасываются в факельную систему газы из сепараторов узлов очистки водородсодержащего и топливного газа в факельную систему часто направляются газы из рефлюксных емкостей установок первичной перегонки нефти и вторичной перегонки бензина. Особенно велики постоянные сбросы на факел на тех НПЗ, где мощности систем сброса и переработки углеводородных газов т-сутствуют или недостаточны. [c.279]

    Схема газификации сернистых углей с высокотемпературной очисткой генераторного газа от H2S, разработанная в Институте горючих ископаемых, показана на рис. 6.15. Дробленый до размеров частиц не более 10 мм уголь после подсушки поступает в газификатор с кипящим циркулирующим слоем. Выходящий из газификатора влажный неочищенный газ температурой 900—1000 °С поступает в пылеуловитель и далее в аппарат для очистки от сероводорода. Для высокотемпературной очистки газа от сероводорода в России разработан метод связывания H2S оксидами металлов по реакции МеО + H2S = MeS + Н2О. Образующиеся сульфиды термически прочны и характеризуются высокой температурой плавления. Для температуры газов 400—750 °С пригодны железные руды, для 600—900 °С— марганцевые руды или марганцевые концентраты, для 950—1100 °С — оксиды кальция СаО или известняк СаСОз-Отработанный реагент удаляется из сероочистителя шлюзованием, а очищенный от H2S газ температурой 750—950 °С под давлением до 1 МПа поступает в керамический фильтр тонкой очистки, откуда подается в сбросную газовую турбину. Газовая турбина сблокирована с воздушным компрессором и электрогенератором. После газовой турбины энергетический газ температурой 450—550 °С и давлением 0,1 МПа подается в топку котла, вырабатывающего пар для паровой турбины. [c.141]

    FeO(OH), a также TiOj (который выделяют как ценный побочный продукт, он используется для очистки городского горючего газа от серы). [c.308]

    Для получения бессмольного генераторного газа применяют обращенный процесс газификации. В это.м случае пары смолы проходят через высокотемпературную кислородную зону газогенератора, а затем через восстановительную зону, где подвергаются термическому разложению и частичному окислению. При этом увеличиваются выход горючего газа и его теплота сгорания, отпадает необходимость в очистке газа от смолы. Обращенный метод газификации позволяет без увеличения уноса интенсифицировать процесс путем форсирования дутья, однако условия сущки и разложения отходов неблагоприятны. Тепло в зоны [c.17]

    Одним из распространенных круговых способов очистки различных горючих газов от сернистых соединений является способ очистки с помощью этанолааиноБ (ашноопкртов). Этот процесс был запатеато-вая в 1930 г. На нефтеперерабатывающих предприятиях шро- [c.7]

    Для добычи газа обычно бурят скважины в месте его нахождения. Этому предшествует разведка геологами газовых месторождений выяснение границы газоносности, размеров площади газоносного пласта, на какой глубине залегает газ, состав и запасы его. Когда скважину доводят до скоплений газа, то последний, под давлением вырываясь из скважины, может захватить с собой куски породы, грязь, песок, воду, иногда нефть. Для обеспечения возможно большей безопасности и бесперебойной работы газовых установок, потребляющих газообразное топливо, горючие газы очищают от вредных примесей (песка, влаги, сероводорода) непосредственно на промысле. Поэтому газ из скважины поступает сначала в сборный коллектор (трубопровод, охватывающий все месторождение), а из него — в установки очистки и осушки газа. Газ очищается от сероводорода (при наличии его) и влаги в абсорбционной установке. Попутно с сероводородом улавливается углекислота. Очищенный и осушенный газ выходит через трубу в верхней части сепаратора в сборный коллектор и под предельным давлением (55 кГ1см ) направляется в магистральный газопровод потребителям по подземным газопроводам. Давление его уменьшается вследствие трения частиц о стенки труб и затраты энергии на передви- [c.25]

    Для анализа на приборе Мурё берут 200 см природного газа. Сушат го, пропуская через трубку с фосфорным ангидридом до достижения постоянного объема. Объем сухого газа замеряют и приводят к нормальным условиям давления и температуры. Далее ведут поглощение всей массы газа в большом поглотительном цикле, заставляя природный газ длительно циркулировать по системе трубок при помощи ртутного капельного насоса Шпренгеля. В большом поглотительном цикле происходит поглощение всех химически деятельных газов. Углекислый газ и сероводород, а также другие возможные кислые газы поглощаются твердым едким калием получающаяся при этой реакции вода задерживается в дальнейшей трубке с фосфорным ангидридом. Далее газ проходит через трубку с металлическим кальцием, нагретым докрасна, где связывается находящийся в газе азот (и кислород). Углеводороды и другие горючие газы сжигаются над окисью меди, помещенной в дальнейшей по пути движения газа трубке, нагреваемой докрасна. Образующиеся при горении углекислота и водяной пар поглощаются следующей парой трубок с едким калием и с фосфорным ангидридом. Чистота благородных газов устанавливается по спектру, наблюдаемому при свечении их в разрядной трубке Плюккера. Сумма благородных газов может быть подвергнута вторичной более тонкой очистке в малом поглотитель- ном цикле, содержащем те же реактивы, что и большой цикл. Сумма благородных газов замеряется в малом измерительном колоколе и приводится к нормальным условиям. Затем благородные газы циркулируют над небольшим количеством активированного кокосового угля, охлаждаемого жидким воздухом при этом происходит адсорбция аргона, криптона и ксенона, а гелий и неон остаются в виде газа и могут быть после качественной проверки на чистоту по спектру переведены в измерительную бюретку для замера их количества. Аргон и другие тяжелые благородные газы десорбируются из угля при его нагревании и переводятся в измерительную часть прибора для их количественного определения. Прибор Мурё дает весьма точные результаты. Анализ на нем, включая сушку газа, продолжается около 6—7 часов. [c.202]

    Очистка горючих газов от сероводорода и диоксила углерода. Для очистки горючих газов от кислых компонентов или одного из НИ1С промышленное применение в настоящее время нашли следующие основные процессы  [c.157]

    Э 1 аноламииовая очистка горючих газов ведется на установках (риг.5.5), состоящих из абсорбера и десорбера колонного типа (об)рудо1зашюго соответственно 20 и 15 тарелками) и вспомогательного оборудования. В е1из абсорбера К-1 поступает исходный газ про 1 ивотоком контактирует с нисходящим потоком раствора М3 А. С верха К-1 через каплеотбойник уходит очищенный газ, а [c.159]

    Ограничение количества горючих веществ и их размещения должно достигаться регламентацией количества (массы, объема) горючих веществ и материалов, находящихся одновременно в помещении, на складе наличием аварийного слива пожароопасных жидкостей и аварийного стравливания горючих газов из аппаратуры, противопожарных разрывов и защитных зон своевременной очисткой помещений, коммуникаций, аппаратуры от горючил отходов, отложений пыли, пуха и т. п. организа- [c.17]

    В производстве аммиака в отделении медноаммиачной очистки произошел взрыв водородо-воздушной смеси с последующим пожаром и значительными разрушениями. Газ проник в производственное помещение через фланцевое соединение на коллекторе, находившемся под давлением газа 32 МПа. Причина аварии — недостаточная затяжка болтов на ф ланцевых соединениях газопровода. Недостаточная затяжка или неполный комплект болтов на фланцевых соединениях, а также ошибочные действия ремонтного персонала приводили к авариям на газопроводах, транспортирующих водород, конвертированный газ и другие взрывоопасные горючие газы. [c.192]

    Как известно, конвертированный и коксовый газ содержит взрывоопасные и токсичные вещества. Растворы моноэтаноламина и метанола, применяемые для очистки газов, токсичны, а жидкий азот при попадании на кол<у вызывает обмораживание. Кроме того, процессы очистки идут при высоких и очень низких температурах. Возможность возникновения пожара или взрыва, отравления или получения ожога может создаваться при нарушениях технологического режима, подсосе воздуха в газ или в результате образования в производственных помещениях взрывоопасных и отравляющих газовоздушных смесей при прорыве газов и жидкостей через неплотности оборудования, коммуникаций и запорной арматуры. Поэтому герметичность оборудования и трубопроводов отделения очистки должны проверяться ежесменно. Запрещается подтягивать крепежные детали фланцевых соединений для ликвидации пропусков газов и жидкостей, если система находится под избыточным давлением. Давление следует повышать и снижать постепенно, по установленному для данного оборудования регламенту. Инертный газ, применяемый для продувок, должен содержать не более 3% (об.) кислорода и совершенно не иметь горючих примесей. Перед продувкой газ должен подвергаться анализу. [c.52]

    Радикальное решение проблемы очистки указанных газов — каталитическое восстановление оксидов азота горючими газами — природным газом, водородом, оксидом углерода и аммиаком. Условия проведения процесса и тип используемого катализатора определяются видом применяемого газа. Восстановление оксидов азота снижает их содержание в очищенном газе до 0,001—0,0057о (об.), что обеспечивает санитарные нормы по содержанию оксидов азота в приземном слое воздуха при мощностях производств кислоты до 1,0 млн. т/год, сосредоточенных в одной точке при высоте выброса 100—150 м. [c.217]

    Опасности, возникающие при эксплуатации установ ки пиролиза метана и очистки сажи, связаны с. проведе иием огневых процессов, подогрево.м горючих газов до высокой температуры, работой с нагретыми взрывоопасными газовыми смесями, а также с использованием концентрированного кислорода. [c.94]

    К началу Первой мировой войны практически все крупные и средние города в поясах умеренного климата и даже многие города в тропиках располагали щирокой газораспределительной сетью, гарантирующей бесперебойное снабжение основной массы населения газообразным топливом постоянного состава. Надо сказать, что газ, о котором идет речь, почти во всех странах был синтетическим , т. е. его получали искусственным путем, в основном из угля. В каждом городе был построен газовый завод, на котором в горизонтальных или вертикальных ретортах из угля выводились летучие вещества, а затем он подвергался частичному термическому крекингу. В результате этого получали, с одной стороны, твердый остаток, или газовый кокс, пригодный в основном для сжигания в бытовых зак )ытых печах или в котлах центрального отопления, и, с другой стороны, горючий газ, который после соответствующей обработки и очистки использовался как идеальное топливо для освещения, приготовления пищи и отопления помещений. Так, угольный газ, содержащий около 20—30 об. % метана и около 50 об. % водорода (табл. 1), положил основу производства городского газа с теплотой сгорания 4450 ккал/мз (18 630 кДж/мЗ). [c.11]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    Аналогичный расчет мембранного каскада для выделения криптона и ксенона из сбросных газов заводов переработки ядер-ното горючего показал, что для разделения 0,36 м ч смеси [Кг (1,02-10 мол. доли), Хе (4,07-10 мол. доли), Ог (0,21 мол. доли), остальное — N2] потребуется 26 рабочих ступеней, по 13 в исчерпывающей и укрепляющей части. Коэффициент деления потока 0 для исчерпывающей части — 0,385, для укрепляющей — 0,425. В результате разделения получают 0,0037, м /ч дистиллята (1,00-10 мол. доли Кг, 4,00-10 — Хе, 0,959 — О2, остальное— N2) и 0,3563 м ч кубового остатка (9,35-10 мол. доли Кг, 4,28-10 2 — Хе, 0,203 — О2, остальное — N2). Степень очистки газов и уровень радиации таковы, что поток можно выводить в атмосферу. Общая длина полых волокон из оиликонового каучука в подобной установке составляет 508 392 м. [c.319]

    Магистральный газопровод включает в себя комплекс сооружений, обеопечивающих транспорт природного или нефтяного газа от газовых или нефтяных промыслов к потребителям газа. Состав сооружений зависит от назначения газопровода и включает следующие основные комплексы головные сооружения, состоящие из систем газосборных и подводящих газопроводов, компрессорного цеха и установок очистки и осушки газа линейные сооружения, состоящие из собственного магистрального газопровода с запорными устройствами, переходов через естественные и искусственные сооружения, станции катодной защиты, дренажных установок компрессорные станции с установками по очистке газа, контрольно-распределительным пунктом для редуцирования газа на собственные нужды станции, а также подсобно-вспомогательными сооружениями (включая склады горючего, смазочного материала, установки регенерации масла и ремонтно-эксплуатационные блоки)  [c.125]

    Регенеративный реактор для термического крекинга метана. Такой реактор действует адиабатически в одном цикле из четырех фаз. Реактор заполнен керамической массой, которая попеременно нагревается и охлаждается метаном, который эндотермически крекируется в ацетилен. Между этими основными фазами находятся фазы удаления и очистки, таким образом, полный цикл будет следующим нагревание — удаление горючих газов — реакция — удаление реакционных газов. [c.109]

    Сравним характеристики работы системы очистки азотоводородной смеси крупнотоннажного агрегата производства аммиака (агрегат № 6 ПО Тольят-тиазот , проект АМ-76 ГИАП) по схеме без ВЗУ и с ВЗУ для селективного выделения примесей малорастворимых горючих газов из насыщенного раствора МЭА (табл. 5.2). Использование ВЗУ позволило вместо сброса в атмосферу газа с содержанием до 10% Из рекуперировать газ с содержанием до 64% Нг, снижая его содержание в составе СО2 в 50 раз увеличить на 25% количество товарного СО2 снизить энергозатраты на 30% и повысить мощность узла на 10%. [c.268]

    Сырьем установки является природный газ установок аминовой очистки от сероводорода и диоксида углерода с первой и второй очередей ОГПЗ, соответствующий требованиям ГОСТ 5140-83 Газы горючие природные, подаваемые в магистральные газопроводы и ГОСТ 5542-78 Газы природные топливные для коммунально-бытового назначения содержание диоксида углерода - не более 0,03 % по объему содержание серо-окиси углерода - не более 50 мг/м в расчете на серу содер- [c.67]


Библиография для Очистка газов горючих газов: [c.264]    [c.483]   
Смотреть страницы где упоминается термин Очистка газов горючих газов: [c.429]    [c.377]    [c.50]    [c.156]    [c.158]    [c.159]    [c.174]   
Технология серной кислоты (1971) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционно-каталитическая очистка горючих газов от сероводорода

Горючие газы

Драбкин. К вопросу об очистке горючих газов от сероводорода растворами аминоспиртов

Методы очистки двуокиси углерода от инертных и горючих газов

Охлаждение и очистка газов, получаемых при термической переработке твердых горючих ископаемых

Очистка горючих газов

Процессы очистки горючих газов от твердых веществ



© 2025 chem21.info Реклама на сайте