Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лантан применение

    Активным компонентом катализаторов конверсии углеводородов за редкими исключениями является никель. Среди рассматриваемой группы смешанных катализаторов (табл. 1—5) имеется единственный пример применения кобальта (в смеси с лантаном) и платины в качестве активных компонентов. [c.19]

    Разделение компонентов лучевого топлива пробовали проводить также с применением нерастворимых металлов [348]. В этом случае происходит восстановление урана до металла. Испытывались серебро, лантан [304] и магний [349, 3821. [c.435]


    Элементы побочной подгруппы III группы скандий 8с, иттрий У, и лантан Ьа относятся к редким и рассеянным металлам. До недавнего времени они не находили широкого применения. По электронному строению они относятся к переходным металлам, поскольку содержат на внешней оболочке один ( -электрон, однако по свойствам напоминают скорее щелочноземельные металлы. Все они сильно электроположительны и практически всегда проявляют одну степень окисления +3. Щелочные свойства гидроксидов этих металлов усиливаются от скандия к лантану (гидроксид лантана — сильное основание). [c.153]

    Применение. Скандий, иттрий и лантан являются компонентами ряда сплавов, используемых в современной технике. [c.486]

    Металлы подгруппы скандия и их соединения широкого применения пока не имеют. Однако в настоящее время намечаются пути использования соединений скандия в электронике некоторые ферриты, содержащие небольшие количества оксида скандия, применяются в быстродействующих счетно-решающих устройствах. Металлический скандий используется в электровакуумной технике как геттер (поглотитель газов). Оксид иттрия также применяется в производстве ферритов. Ферриты, содержащие иттрий, используются в слуховых приборах, в ячейках памяти счетно-решающих устройств. Изотоп У применяют в медицине. Лантан применяется главным образом в смеси с лантаноидами. [c.282]

    В последнее время элементы подгруппы скандия и их соединения находят применение в новой технике. Чистый скандий служит для приготовления сплавов, противостоящих действию высоких температур. Иттрий применяют в качестве добавки для приготовления специальных сплавов, а лантан и его оксид — для поглощения остатков газов (Ог, СОг, N2) в высоковакуумных приборах. Кроме того, ЬагОз используют при изготовлении глазурей и оптических стекол для объективов фотоаппаратов. [c.441]

    Данные работы [11], вышедшей из печати после опубликования нашей статьи по системе лантан — германий [5 , сильно отличаются от наших. Главная причина этого несоответствия в том, что приготовление сплавов по методике, примененной авторами [11], ведет к сильному загрязнению сплавов посторонними примесями. [c.196]

    Габером и его сотрудниками было испробовано большое число катализаторов церий и сплавы или специальным образом приготовленные смеси его с железом, марганцем, лантаном марганец, приготовленный из амальгамы марганца осмий, рутений, уран, вольфрам, молибден и другие металлы. Вот, несколько дан ных, касающихся применения катализаторов, величины давления и полученных концентраций аммиака при различных, постоянно поддерживаемых температурах реагирующих веществ. Смесь азота и водорода содержала 3 об ема водорода на один об ем азота. [c.111]


    Изотопический обмен и возбуждение спектров уравновешенного газа разделены. Последнее дает возможность более гибко подбирать оптимальные условия анализа, обеспечивать высокую чувствительность определений. Разработаны методики определения водорода в алюминии, титане, ванадии, хроме, железе, кобальте, никеле, меди, цинке, иттрии, цирконии, ниобии, молибдене, палладии, кадмии, лантане, празеодиме, неодиме, тантале и вольфраме. Преимущество данного варианта заключается в возможной вариации температуры и времени обмена (для разных металлов и газов от 400—500° С до 2000—2100° С и от 5— 0 мин до 2—Зч), применении ваин (железных, никелевых, кобальтовых), графитовых тиглей различной формы и других необходимых в процессе анализа изменений. [c.23]

    Способы получения нанесенных материалов с улучшенной термостойкостью особенно важны для катализаторов, подверженных локальным перегревам (например, метанирование) или требующих окислительной регенерации (например, прямое ол<ижение). Введение катионов является одним из способов придания термической стабильности нанесенным материалам. Например, оксид алюминия нуждается в стабилизации для предупреждения его высокотемпературного перехода в а-фор-му, при этом поверхность обычно уменьшается с 250 до 1 м /г. Если к оксиду алюминия добавить немного оксидов элементов группы II (кальций, стронций, барий) [30] или редкоземельных элементов (церий, лантан) [31] и затем прокалить при 1200" С в течение 2 ч, то получается стабильная поверхность порядка 20—100 м /г. Указанные материалы можно использовать как термически стабилизированные носители. Они нашли применение в катализаторах очистки выхлопных газов автомобилей и в каталитическом сжигании. [c.53]

    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    Иногда оказывается выгодным совместное применение высвобождающего и защищающего реагентов. Так, для полного устранения помех от алюминия при определении магния требуется в пробу ввести лантана (высвобождающего реагента) в 10-кратном по сравнению с алюминием количестве. С лантаном такой высокой концентрации работать неудобно, так как это приводит, к быстрому засорению горелки. Но когда вместе с лантаном в пробу вводят 10% глицерина и 0,1 М хлорную кислоту, то для полного подавления помех от алюминия достаточно двукратного избытка лантана. Аналогичные ре- [c.140]

    Для нужд автомобильного транспорта создаются гидриды, которые теоретически могут содержать до 130—140 кг водорода на 1 м металлического гидрида. Однако реализуемая емкость гидрида вряд ли будет превышать 80 кг/м . Но и такое содержание водорода в баке емкостью 130 дм достаточно на 400 км пробега автомобиля. Это реальные для применения показатели, но следует учитывать увеличение массы бака, заполненного гидридом. Например, масса лантан-никелевого гидрида достигает 1 т, а гидрида магния —400 кг [109]. [c.476]

    Окись ртути. Суспензия окиси ртути имеет pH, приблизительно равный 7,4. Для некоторых целей ее применение особенно удобно потому, что избыток осадителя может быть полностью удален из осадка прокаливанием, а ртуть, перешедшая в раствор, может быть осаждена сероводородом. Осаждение лучше всего удается из растворов хлоридов. Железо, хром и алюминий осаждаются количественно в холодном растворе, но осадки могут быть загрязнены щелочноземельными металлами, если последние присутствовали в растворе. Цинк, кобальт, никель, бериллий, церий и лантан осаждаются до некоторой степени на холоду и в большей степени из горячих растворов марганец осаждается на холоду только при долгом стоянии [c.109]

    Скандий применяется в качестве присадки к некоторым сплавам. Если бы были разработаны методы получения дешевого иттрия, он, как легкий металл, мог бы найти значительное применение в сплавах с алюминием для авиационной промышленности. Окись иттрия с содержанием примесей не более 1 10" % идет для изготовления итгриевых ферритов, использующихся в радиоэлектронике, в счетно-решающих устройствах и пр. Так как лантан при сгорании выделяет больше тепла, чем алюминий, он применяется в зажигательных сплавах. Соединения лантана используются для изготовления глазурей, оптического стекла, а также в виде микроэлементов, вносимых в почву для ускорения роста ряда сельскохозяйственных культур. Актиний ввиду высокой удельной а-активности не нашел какого-либо практического применения. [c.272]


    Применение -металлов III группы. Применение 8с, У, Ьа ограничено их дефицитностью. Однако лантан Ьа употребляется в сплавах с вольфрамом. Лантанированный вольфрам обладает малой работой выхода электрона и дуговой разряд между электродами из этого материала отличается большой стабильностью (сварка в инертных газах). [c.324]

    У атома цезия начинает заполняться б5-состояние, а у атома бария это заполнение завершается. У следующего за барием лантана начинает заполняться 5 -оболочка. Таким образом, у этих атомов оказываются незаполненными не только предыдущий (пятый) этаж , но и в четвертом остаются свободными 14 мест 4/-ячеек, И вот после лантана начинают заполняться эти далеко находящиеся от внешних электронных оболочек орбиты. Естественно, что элементы, в которых происходит заполнение /-ячеек, по своим свойствам весьма близки к лантану. Они также трех-валентны. Эти элементы носят название лантонидов, или редких земель. Остановимся кратко на все возрастающем применении редких земель. [c.588]

    Скандий, иттрий и лантан —элементы, родственные бору и алюминию они образуют бесцветные соединения, похожие на соответствующие соединения алюминия окислы этих соединений имеют формулы 8с20з, УгОз и ЬазОз. Ни сами элементы, ни их соединения не нашли пока достаточно широкого применения. [c.528]

    Этот метод является одним из наиболее удобных и распространенных для концентрирова ния плутония. В качестве носителя обычно используют лантан или никель [503]. Кроме этого, имеются данные (А. А. Чайхорский, 1953 г.) о возможности применения в качестве носителя плутония гидроокисей элементов d, Сг, А1, Мп, Fe, Со, Ве, Mg, Ti, Sn, Pb. Плутоний может быть осажден как растворами едких щелочей, так и раствором аммиака. В присутствии в растворе алюминия, свинца, цинка, солей натрия, калия и аммония плутоний легко осаждается в виде гидроокиси 20%-ным раствором едкой щелочи. При определении плутония в растворах, содержащих Са, Mg, Мп, Со, Си, Сг и др., осаждение плутония производят 20%-ным раствором аммиака. Некоторые из указанных элементов образуют в избытке аммиака растворимые соединения и тем самым не мешают соосаждению плутония. [c.278]

    Бейкер и Лири [20] отмечают возможность применения вторичных аминов для экстракционного извлечения плутония из азотнокислых растворов, содержащих такие продукты деления, как цирконий, молибден, рутений, лантан и церий. [c.342]

    Лантан и его аналоги нашли нрименение и в других областях современной техники. В химической и нефтяной иромышлениости они (и их соединения) выступают в качестве эффективных катализаторов, в стекольной — как красители и как вещества, придающие стеклу специфические свойства. Разнообразно применение лантаноидов в атомной технике и связанных с нею отраслях. Но об этом — нозже, в разделах, носвященпых каждому из лантаноидов. Укажем только, что даже созданный искусственно прометий нашел применение энергию распада прометия-147 используют в атомных электрических батарейках. Одним словом, время безработицы редкоземельных элементов закончилось давно и бесповоротно. [c.122]

    Были определены соотношения, в которых реагируют лантан с ализарином 8 и антипирином. Для этого использовали экстрак-циоппо-фотометрический метод. Опыты ставили таким образом, чтобы достигалось полное извлечение изучаемого комплекса в слой органического растворителя. Для определения соотношения, в котором реагируют лантан и ализарин 8, применили метод изомолярных серий [9], использованный впервые с применением органических экстрагентов А. К. Бабко и А. Т. Пилипенко-[10]. Результаты опытов представлены в виде графика на рис. 4, из которого следует, что лантан с ализарином 8 в присутствии антипирина реагируют в соотношении 1 1, [c.275]

    Применение пламенно-эмиссионной спектрометрии. Пламенно-эмиссионная спектрометрия широко используется для определения концентраций натрия, калия, кальция и магния в клинических пробах. Удобство, правильность, чувствительность и скорость этого метода делают его пригодным для серийных анализов. Для проведения анализа, если в пробе присутствует значительное количество белка, ее сначала надо обработать азотной или хлорной кислотой (например, сыворотку крови). Затем добавляют освобождающий агент (лантан) и подавитель ионизации (литий), а раствор разбавляют до нужного объема высокочистой деионизованной водой. Многие биологические жидкости содержат значительное количество фосфатов, поэтому необходимо использовать освобождающие агенты. И, наконец, приготовленные растворы пробы анализируют с помощью пламепио-эмиссионного спектрометра, например пламенного фотометра, имеющего отдельные каналы (детекторы) или сменные светофильтры для каждого определяемого элемента. [c.693]

    Основные научные работы посвящены химии и минералогии редких элементов. Исследовал минералы, содержащие ниобий, тантал, лантан, торий, церий, уран и цирконий. Описал ильменские цирконы и разработал способ получения окиси циркония, нашедший промышленное применение. Открыл (1836) и исследовал минералы ирнт и осмит, описал тройную соль из осмия, иридия и платины. Составил и опубликовал (1859) первую в мире обобщающую сводку урановых минералов. Собрал обширную коллекцию минералов. [c.138]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Окись церия оказалась чрезвычайно ценным абразивом и нашла широкое применение для шлифовки оптического стекла (полирит). Скорость работы с окисью церия по сравнению с другими абразивами повысилась в 2—3 раза при высоком качестве шлифовки. Лантан в виде окиси нашел применение в составе стекла для объективов фотоаппаратов. Эти стекла совсем не содержат кремнезема, а состоят из окислов редких земель с основой из окиси лантана. Применяются окислы РЗЭ также для глазурей и эмалей, для различных огнеупорных изделий. [c.342]


Смотреть страницы где упоминается термин Лантан применение: [c.144]    [c.86]    [c.179]    [c.55]    [c.53]    [c.18]    [c.195]    [c.126]    [c.410]    [c.518]    [c.519]    [c.678]    [c.836]    [c.837]    [c.49]    [c.292]    [c.293]    [c.595]    [c.6]    [c.228]   
Общая и неорганическая химия (1981) -- [ c.500 ]

Ионообменная технология (1959) -- [ c.372 ]

Неорганическая химия Том 2 (1972) -- [ c.49 ]

Ионообменная технология (1959) -- [ c.372 ]




ПОИСК





Смотрите так же термины и статьи:

Лантан



© 2025 chem21.info Реклама на сайте