Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методика определения водорода в металлах

    Зависимость, существующая между максимальным током электрохимического растворения металла, осажденного на индифферентном электроде, и концентрацией его ионов в растворе, дает возможность использовать метод инверсионной вольтамперометрии твердых фаз в аналитических целях. Возможность определения элементов методом инверсионной вольтамперометрии металлов определяется рабочей областью потенциалов применяемого индифферентного электрода. Лучшими с этой точки зрения являются специально подготовленные графитовые электроды. Они электрохимически устойчивы, реакции разряда — ионизации водорода и кислорода протекают на этих электродах с большим перенапряжением. Так, в нейтральной среде практически свободен интервал потенциалов (-f0,9) — (—1,2) в относительно насыщенного каломельного электрода, в кислой среде он смещается в положительную, в щелочной— в отрицательную сторону. Таким образом, возможно определять и благородные металлы, и металлы сдвинутые в ряду напряжений в сторону отрицательных потенциалов. Разработаны методики определения золота, серебра, ртути, меди, висмута, сурьмы, свинца, олова, никеля, кобальта, таллия, индия, кадмия и железа. [c.41]


    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    МЕТОДИКА ОПРЕДЕЛЕНИЯ ВОДОРОДА В МЕТАЛЛАХ 607 [c.607]

    МЕТОДИКА ОПРЕДЕЛЕНИЯ ВОДОРОД в МЕТАЛЛАХ 613 [c.613]

    МЕТОДИКА ОПРЕДЕЛЕНИЯ ВОДОРОДА в МЕТАЛЛ Х Й15 [c.615]

    Изотопический обмен и возбуждение спектров уравновешенного газа разделены. Последнее дает возможность более гибко подбирать оптимальные условия анализа, обеспечивать высокую чувствительность определений. Разработаны методики определения водорода в алюминии, титане, ванадии, хроме, железе, кобальте, никеле, меди, цинке, иттрии, цирконии, ниобии, молибдене, палладии, кадмии, лантане, празеодиме, неодиме, тантале и вольфраме. Преимущество данного варианта заключается в возможной вариации температуры и времени обмена (для разных металлов и газов от 400—500° С до 2000—2100° С и от 5— 0 мин до 2—Зч), применении ваин (железных, никелевых, кобальтовых), графитовых тиглей различной формы и других необходимых в процессе анализа изменений. [c.23]

    Прежде чем начать поиск конкретных методик получения того или иного препарата, являющегося полупродуктом в многостадийном синтезе, необходимо составить схему синтеза. Обычно при составлении схем рекомендуется записывать структурные формулы исходных и промежуточных продуктов. В схеме следует обозначать только главный продукт (после стрелки) и исходный (перед стрелкой). Побочные продукты в генеральной схеме записывать не следует. Реагенты, катализатор и условия указывают над и под стрелкой. В тех случаях, когда реакция сопровождается окислением или восстановлением, но окислитель или восстановитель еще не известны или это не принципиально, то окисление принято обозначать символом атома кислорода в квадратных скобках [01, восстановление—символом атома водорода 1Н1. Обычно такие обозначения приводятся в схеме синтеза над стрелкой. Для обозначения повышенной температуры принято ставить латинскую букву ( или греческую А (дельта) если синтез проводится при повышенном давлении, то рядом с условным обозначением температуры ставят символ р. Если катализатором реакции является металл или молекула определенного химического вещества, то, как правило, над стрелкой пишется химический символ этого металла или формула катализатора, при кислотном катализе — символ Н при щелочном — ОН . [c.85]

    Столкнувшись с трудностью химического отделения родия от иридия Мак-Невин и Тутхилл [100] предложили для этого определения кулонометрическую методику. Они осуществляли отделение 6—30 мг родия от 60 мг иридия путем электролиза в 3,5М растворе хлористого аммония при потенциале —0,40 в. Было обнаружено, что осадок родия содержит окислы. Если вес осажденного металла должен служить мерой первоначальной концентрации родия, то этот осадок следует обработать водородом при температуре 450° С. [c.56]

    В тех случаях, когда металл не удается определить в виде остатка одновременно с определением углерода и водорода, органические соединения озоляют, прокаливая их в платиновом или фарфоровом тигле или в лодочке. В зависимости от природы присутствующих элементов металл (окисел металла) взвешивают в виде остатка после прямого прокаливания или переводят металл, прокаливая с серной кислотой, в сульфат и в виде сульфата взвешивают. Ниже приведена одна из распространенных методик определения металлов. [c.43]

    Разработана методика определения азота, кислорода и водорода в малых объемах металла. Метод позволяет анализировать швы, включения и определять глубину диффузии газов. [c.277]

    Клячко К). А. и Атласов А. Г. Определение газов в черных металлах. Сообщ. 2. Аппаратура и микроаналитическая методика для определения водорода методом вакуум-нагрева. Зав. лаб., 1950, 16, № 3, с. 283— [c.165]

    Систематизируя литературные данные о влиянии примесей металлов в рассоле на процесс электролиза с ртутным катодом, можно отметить противоречивость приведенных количественных характеристик, что обусловлено различной методикой и условиями эксперимента. Предложена стандартная методика определения примесей ( амальгамная проба ), основанная на измерении объема выделившегося водорода при обработке амальгамы натрия испытуемым рассолом . По этой методике Г. И. Волков в строго одинаковых условиях исследовал влияние на процесс электролиза свыше 40 различных катионов . [c.131]

    Таким образом, разработанная методика и конструкция спектральной ячейки могут обеспечить необходимую чувствительность спектрального определения водорода, а также возможность сбора в ней влаги, образовавшейся при пропускании кислорода над расплавленным металлом. [c.42]

    Методика определения водорода [19] дает возможность подобрать для данного парогенератора водный режиме минимальной концентрацией водорода в питательной воде и паре. Большая роль в развитии пароводяной коррозии принадлежит высокому уровню локальных тепловых нагрузок. Было бы принципиальной ошибкой считать, что путем улучшения водно-химического режима котлов при высоком уровне теплового напряжения можно ликвидировать пароводяную коррозию. При нарушениях топочного режима, шлаковании, вялой циркуляции воды в барабанных котлах, пульсирующего потока в прямоточных котлах (особенно при высоких тепловых нагрузках) средствами химической обработки воды практически невозможно предупредить разрушения металла в результате пароводяной коррозии. При недостаточной скорости воды в парогенерирующих трубах, обусловленной рядом теплотехнических факторов и конструктивными особенностями котлов (малый угол наклона, горизонтальное расположение труб), ядерный режим кипения может переходить б менее благоприятный — пленочный . Последний вызывает перегрев металла и, как правило, пароводяную коррозию. Развитию ее сильно способствуют вносимые в котел с питательной водой оксиды железа и меди, которые, образуя отложения на поверхностях нагрева, ухудшают теплопередачу. Стимулирующее действие меди на развитие пароводяной коррозии заключается также в том, что она вместе с оксидами железа и другими загрязнениями, поступающими в котел, образует губчатые отложения с низкой теплопроводностью, которые сильно способствуют перегреву металла. Прямое следствие парегрева стали и протекания пароводяной коррозии — появление в паре котла молекулярного водорода. Вполне понятно, что по его содержанию можно оценивать лишь среднюю скорость пароводяной коррозии, локализацию же разрушений таким методом выявить трудно. [c.181]


    В настоящее время разрабатывается теория и методика экспериментального определения диффузии, проницаемости и растворимости водорода в жидких сплавах на медной и железной основе, а также ведутся работы по определению содержания водорода и кислорода непосредственно в расплавленных черных металлах применительно к производственным условиям. [c.73]

    Очевидно, концентрация ионов водорода при колориметрических определениях играет очень важную роль, и при использовании колориметрических методик надо руководствоваться следующими положениями реакции образования окрашенных комплексов металлов с анионами сильных кислот следует проводить в кислых средах если реактив является слабой кислотой, то с повышением pH степень связывания иона металла в комплекс возрастает. Однако при повышении pH раствора надо учитывать ступенчатость комплексообразования, проявление индикаторных свойств реактивом и возможность образования окрашенных комплексов реактивом с посторонними ионами интервалы pH, при которых следует проводить реакцию, как правило, определяют экспериментально. При проведении анализа химик должен строго придерживаться прописи, указанной в методике. [c.26]

    Определение металлов после разложения в колбе Кьельдаля (Ре, Со, N1, Си, Мп, 8п, Р(1). Для кьельдализащш ЭОС, содержащих все перечисленные выше металлы, за исключением марганца и олова, в качестве окислительного агента применяют смесь серной и азотной кислот с добавлением пероксида водорода. В случае марганца и олова достаточно эффективна одна серная кислота с добавкой пероксида водорода. В результате кьельдализации ЭОС с последующим разрушением избытка азотной кислоты и пероксида водорода в колбе остается сернокислый раствор нелетучего сульфата соответствующего металла в устойчивом состоянии окисления. Эти металлы полярографируют по основной методике, общей для всех минерализатов, образующихся в результате разложения любым из применяемых способов. Ниже во избежание повторения при описании методик определения отдельных металлов после разложения в колбе Кьельдаля будут указаны лишь специфические условия подготовки анализируемых и стандартных раст- [c.210]

    Оригинальную методику определения коэффициента диффузии водорода (О) в железе и сталях при комнатной температуре разработали Я. М. Гельфер и Т. А. Изманова [25]. Определение О основано на применении цилиндрических образцов радиусом Я и длиной 21, исходя из заданной начальной постоянной концентрации водорода в металле, и допущении массооб- [c.9]

    Влияние внешнеприложенной растягивающей нагрузки на наводороживание стальных образцов в виде проволоки при ее катодной поляризации в 5%-ной Н2504, содержащей 5 мг/л АзгОз, изучал еще Д. В. Алексеев с сотр. [173]. При этом авторы обнаружили не монотонный характер зависимости наводороживания от нагрузки, растягивающей образец. В интервале 30—40% от разрушающей нагрузки наблюдается некоторое уменьшение наводороживания, особенно выраженное при минимальной плотности поляризующего тока. Это явление авторы [173] интерпретировали таким образом при растяжении проволоки в результате сдвигов образуются трещины, в которые выделяющийся водород проникает глубже, быстрее и в большем количестве, и сталь быстрее охрупчивается. Некоторое уменьшение наводороживания при средних растягивающих нагрузках в работе [173] объясняется сдвигом слоев металла и исчезновением рисок (при переходе за предел упругости), что уменьшает возможность проникновения водорода в металл. Мы видоизменили методику исследования таким образом [286], что насыщали нагруженный образец водородом строго постоянное время (в работе [173] время наводороживания было функцией приложенной нагрузки), а затем определяли его степень наводороживания путем скручивания (методика определения наводороживания путем скручивания описана в разделе 2.4). Влияние растягивающих нагрузок на наводороживание при катодной поляризации изучалось на образцах из стальной углеродистой проволоки [c.89]

    В частности, развиваюш,иеся в настояш,ее время спектральный [8], спектрально-изотопный [9] и другие методы определения водорода в металлах должны в своей методике учитывать подвижность водорода в стали и ее зависимость от состава и структуры. [c.181]

    Анализ выполняется по линии водорода с длиной волны 6562,85 А. В качестве линии сравнения используется линия азота 6610,58 А. Фотографирование спектров производится на спектрографе ИСП-51 с камерой УФ-85. Для возбуждения спектров используются низковольтные импульсные разряды от генератора, схема которого приведена в работе [1]. Единичный импульсный разряд в атмосфере воздуха проплавляет слой металла на глубину 0,4—0,8 мм. Нами было установлено, что в атмосфере аргона разрушение пробы разрядом крайне незначительно и составляет несколько сотых миллиметра. На рис. 2 приведены фотографии пятен обыскривания, полученные в атмосфере аргона 1 и воздуха 2 от двух импульсов в одну и ту же точку. Как следует из этого рисунка, во втором случае имеет место глубокое пронлавление пробы, сопровождающееся выплесками переплавленного металла, в то время как в атмосфере аргона разрушается только поверхностный слой. В связи с этим наша методика может быть с успехом использована для локального послойного определения водорода в металлит-ческих сплавах и сварных швах. [c.183]

    Волна восстановления трехвалентного кобальта до двухвалентного появляется при значительно более положительном потенциале, чем волна восстановления двухвалентного кобальта до металла. Величина потенциала полуволны лежит в пределах от О до —0,5 в в зависимости от природы примененного адденда. Это дает возможность определять кобальт в присутствии значительно большего количества посторонних элементов, чем при его восстановлении до металла. Для окисления кобальта до трехвалентного и его дальнейшего полярографирования предложены различные окислители и растворы различных основных электролитов. Описана методика окисления кобальта до трехвалентного в растворе гидроокиси аммония и хлорида аммония раствором перманганата [1216], перекиси водорода или пербората натрия [62] в последнем случае волна трехвалентного кобальта появляется при потенциале —0,547 в, т. е. до волны никеля. Рекомендовано также полярографировать трехвалентный кобальт в растворе сульфосалицилата натрия [1214] или цитрата натрия [1216] после окисления перекисью водорода волна кобальта начинается почти при нулевом значении приложенного напряжения. Можно полярографировать кобальт в растворе комплексона III [1342], например после окисления с помош.ью двуокиси свинца [1123] в боратном буферном растворе при pH 8—9 в этом последнем случае определению не мешают медь, никель, марганец и цинк, хотя железо и хром должны быть удалены. Описана методика полярографирования триокса-латного комплекса трехвалентного кобальта на фоне растворов оксалата калия, ацетата аммония и уксусной кислоты [935]  [c.166]

    Что касается сходимости результатов определения водорода по нашей методике с методом вакуум-нагрева, то следует отметить, что при равномерном распределении водорода в металле, удается получать весьма близкие результаты, как это и видно из приведенных ниже результатов параллельных анализов на водород четырех исследовавшихся образцов (в с.и /100 е)  [c.188]

    Много работ, основой которых служит экспериментальный материал по химическому равновесию. Теми или иными методами (тензиметрическим, методом э. д. с., методом равновесия с окислительно-восстановительными смесями) изучены процессы восстановления водородом — окислов [7067— 70911, сульфидов [7092—71011, галогенидов [7102—71061, карбидов [Л 07—7113] и кислородсодержащих солей [7114—7123, 7126, 7127] углеродом — окислов [7128—7143] и других веществ [7144—7151] окисью углерода — окислов [7152—7166], сульфидов [7166—7169] и кислородсодержащих солей [7170 — 7180]. К ним надо присоединить системы, содержащие различные окислы, как простые [7181—71851,7187—72631, так и смешанные (твердые растворы) [7264—72931, сульфиды — индивидуальные [7294—7345] и бинарные [7346—7350], а также селе-ниды [6457, 7351—7362] и теллуриды [7363—7374]. Работы [7375—7391] и [7392—7447] относятся соответственно к гало-генидам и их смесям. В число последних входят и работы [7424—74471, посвященные масс-спектрографическому исследованию термодинамических свойств бинарных систем, образованных фторидами металлов. В них разработана методика определения состава и давления пара в этих системах. Были изучены также системы, содержащие карбиды [7448—7467], силициды [7468—7475], нитриды [7476—7483], фосфиды [7484—7491], арсениды [7492— 7499], стибниды [7500—7508], гибриды [7509—7511], соединения металлов с различными элементами [5182, 7510—7517] и друг с другом [7518—7548]. Кристаллогидратам посвящены работы [7549—7570], термической диссоциации различных веществ [7571—7601]. В [7602—7632] изучены процессы взаимодействия с различными веществами, в [7633—7652] реакции окислов с разнообразными соединениями, в [7653—7660] реакции с кислородом, в [7661—7676] с сульфидами, в [7677—7680] с хлоридами. Работы [7681—7690] освещают реакции диспропорцио- ироваиия, а [7691—77181 водосодержащие системы. [c.60]

    Такое разнообразие влияния элементов основного металла, неравномерность распределения водорода в покрытии и в основе, особенности разных методик определения содержания водорода усложняют анализ многочисленных опубликованных данных о на-водороживании стали при хромировании и определение закономерностей этого процесса. [c.49]

    На равновесие реакций комплексообразования часто влияет концентрация ионов водорода. Кроме того, могут происходить конкурирующие реакции, когда в анализируемом растворе наряду с определяемым элементом присутствуют другие компоненты. В значительной степени подобные явления наблюдают в случае малоустойчивых и потому неудобных для аналитических целей комплексов, какими, например, являются тиоцианатный комплекс Ре(1 II), тетрамминат Си(П) и многие другие. Концентрация таких малоустойчивых комплексов заметно изменяется уже при добавлении нейтральных солей (КН4С1). Поэтому при разработке методик фотометрического определения металлов следует непременно оценивать возможное влияние подобных конкурирующих реакций (гл. 3.1). [c.248]

    В связи с ограниченным количеством сведений о проницаемости водорода через металлы при высоких давле-.ниях была разработана специальная методика [35] и проведены исследования по определению водородопроницаемо-сти различных сталей при высоких давлениях и температурах. Полученные данные были сопоставлены с устойчивостью сталей против действия водорода. [c.123]

    На кафедре проводятся теоретические и экспериментальные исследования по вопросам взаимодействия газов с литейными сплавами. Разработаны теория и методика экспериментального определения водо-родопроницаемости, коэффициентов диффузии и массопереноса водорода в жидких металлах. Помимо расширения представлений о модели жидкого состояния металлов появилась реальная возможность использования явления переноса водорода для практического применения. На основании этих исследований разработаны методика и конструкции установок для экспресс-определения содержания водорода в жидких алюминиевых сплавах непосредственно в плавильных или раздаточных печах. [c.68]

    Газообразный бромистый водород. Бромистый водород нельзя готовить методами, обычно применяющимися для приготовления хлористого водорода (т. е. действием концентрированной серной кислоты на галогениды металлов), так как образующийся бромистый водород в дначительной степени окисляется серной кислотой с выделением брома и сернистого ангидрида. Однако при определенных условиях (методика В) эту реакцию можно использовать для получения постоянно кипящей бромистоводородной кислоты. Можно избежать окисления бромистого водорода, заменив серную кислоту фосфорной в этом случае реакция идет медленно и требуется подогревание. Продукт почти всегда содержит значительные количества водяных паров. [c.146]

    Относительная легкость, с которой хром переходит в состояния окисления 2-f, 3 +, и4 +, в значительной мере упрощает его отделение от многих элементов, мешающих его определению. Так, окисление Сг(1П) до r(VI) перекисью водорода или бромом в щелочном растворе с последующим фильтрованием гидроокисей приводит к отделению от многих металлов. Отделение от анионов достигается затем восстановлением r(VI) до Сг(1И) добавлением кристаллического сульфита натрия и осаждением Сг(ОН)з с помощью NaOH или Nag Og. Этот прием особенно широко используется в радиохимических исследованиях [239, 327] и при анализе различных объектов [94, 266]. Для выделения микроколичеств хрома используют соосаждение Сг(П1) с гидроокисями Fe(III), Ti(IV), [327, 348, 350]. Показано [350], что малые количества Сг(1П) могут быть количественно выделены из растворов с pH 5,5—10,5 с гидроокисями Fe(HI), Zr(IV), Th(IV), Ti(IV), e(IV), La(III), Al(III). Для последующего отделения r(III) от больших количеств указанных элементов используют окисление Сг(1П) до r(VI) с вторичным осаждением гидроокисей [203, 348]. Для проверки полноты такого разделения изучено соосаждение r(VI) с гидроокисями металлов при использовании в качестве осадителя 0,5 М КОН (рис. 20) [348]. С уменьшением pH раствора способность удержания хромат-ионов осадками гидроокисей возрастает в ряду Ti(I V) < Fe(III) < Zr(IV) < Th(IV) < d(n) < Y(III). Отделение микроколичеств Сг(1И) от больших количеств r(VI) проводят с помощью соосаждения Сг(П1) с Zn(0H)2. Эту методику используют при определении примеси Сг(1И) в радиоактивных препаратах Ка СгО , Кз СгаО, и 1СгОз[675]. Для отделения 0,01— 5 J t3 Сг(1П) от 0,01 —10 мг Mo(VI) используют свойство Mo(VI) не соосаждаться с осадком Mg(0H)2 при pH 11,5, в то время как при небольших содержаниях 5 мг) Сг(1П) количественно соосаждается при pH 10,3—13,8 [349]. Отделение Mo(VI) от r(VI) проводят аналогичным образом, но с добавлением этанола для восстановления r(VI) до Сг(1И). Разделение Сг(1И) и Fe(II) ос- [c.126]

    Варшавский [202] проводил реакцию с натрием в вакуумной установке при определении следов воды в галогенидах щелочных металлов. Аналогичная методика применялась автором при исследовании стабильности разбавленного раствора натрия в жидком аммиаке при — 78 °С [201 ]. На стабильность этого раствора непосредственно влияет вода, адсорбированная на поверхностях вакуумной установки, выполненной из стекла типа пирекс. Для полного удаления следов влаги необходимо высушивание при 400 °С в течение 200 ч. Количество влаги находят, определяя количество выделившегося водорода с помощью манометра МакЛеода. Такая же методика использована и для определения воды в галогенидах щелочных металлов. Навеску образца в ампуле помещают в вакумную установку в ампулу при —78 °С перегоняют жидкий аммиак и в полученный насыщенный раствор вводят натрий. Через несколько часов с помощью калиброванного манометра Мак-Леода определяют количество выделившегося водорода. По данным Варшавского, образцы Li l, LiBr, Na l, Nal, K l и KI содержали от 100 до 1000 млн" воды. [c.560]

    Большинство методов количественного определения плати новых металлов и золота, и в особенности физико-химические методы, разработаны для определения этих элементов в растворах их комплексных хлоридов и часто являются непригодными в том случае, если определяемые элементы находятся в форме других комплексных соединений. Это обстоятельство, являющееся специфической особенностью аналитической химии элементов, обладающих склонностью к комплексообразованию, требует особого внимания при проведении ряда аналитических операций, точное и внимательное выполнение которых часто обеспечивает уопешность анализа. По этой причине такие аналитические операции, как, например, переведение в хлориды, а также некоторые приемы, используемые во многих аналитических методиках, например восстановление прокаленных металлов в токе водорода, предпосылаются изложению методов количественного определения и излагаются в вводной части. Сюда включены также методы растворения и приготовления стандартных растворов благородных металлов, которые могут служить эталонами для калибровочных кривых и использоваться при освоении методов анализа. [c.95]

    Паллалш может быть определен одновременно с золотом, медью и железом, так как потенциалы полуволны палладия и этих металлов сильно различаются. Медь, железо и золото в этих условиях образуют суммарную волну. В присутствии платины возникает каталитическая волна водорода, препятствующая определению палладия. Определению палладия мешает также кадмий. Метод рекомендуется для анализа зубоврачебных сплавов. Методика приведена выше (см. стр. 191). [c.193]


Библиография для Методика определения водорода в металлах: [c.174]   
Смотреть страницы где упоминается термин Методика определения водорода в металлах: [c.192]    [c.153]    [c.628]    [c.152]    [c.83]    [c.7]    [c.8]    [c.470]   
Смотреть главы в:

Эмиссионный спектральный анализ атомных материалов -> Методика определения водорода в металлах




ПОИСК





Смотрите так же термины и статьи:

Водород определение

Металлы водородом



© 2025 chem21.info Реклама на сайте