Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая металлическая

    Твердые растворы замещения образуются в том случае, если кристаллические решетки компонентов однотипны и размеры частиц компонентов близки. Необходимым условием образования твердых растворов является также и известная близость химических свойств веществ (одинаковый тип химической связи). Так, в кристалле КС1 ионы хлора могут быть постепенно замещены ионами брома, т. е. можно осуществить практически непрерывный переход вещества от состава КС1 к составу КВг без заметного изменения устойчивости кристаллической решетки. Свойства образующихся твердых растворов непрерывно меняются от КС1 к КВг. Ниже приведены примеры ионных, атомных, молекулярных и металлических твердых растворов замещения. [c.134]


    Фрикционный метод нанесения пленок в настоящее время используется для нанесения дисульфида молибдена. Сущность метода состоит в том, что порошок втирается в металлическую поверхность при помощи специальных притиров. При этом дисульфид молибдена образует на металлической поверхности прочные адгезионные пленки вследствие высокой физико-химической активности ювенильных (чистых) поверхностей металла. [c.210]

    Координационные структуры. Координационными называются решетки, Б которых каждый атом (нон) окружен определенным числом соседей, находящихся на равных расстояниях и удерживаемых одинаковым типом химической связи (ионной, ковалентной, металлической). К координационным относятся ранее рассмотренные решетки хлорида натрия и хлорида цезия (см. рис. 58), алмаза (см. рис. 64) и металлов (см. рис. 65). [c.106]

    Соединения с отрицательной степенью окисления углерода. С менее электроотрицательными, чем он сам, элементами углерод дает карбиды. Поскольку для углерода характерно образовывать гомоцепи, состав большинства карбидов не отвечает степени окисления углерода —4. По типу химической связи можно выделить ковалентные, ионно-ковалентные и металлические карбиды. [c.396]

    В зависимости от характера распределения электронной плотности в веществе различают три основных типа химической связи кталентную, ионную и металлическую. Как будет показано дальше, в чистом виде перечисленные типы связи проявляются редко. Е большинстве соединений имеет место наложение разных типов сзязи. [c.42]

    В 1800 г. итальянский физик Алессандро Вольта (1745—1827) сделал важное открытие. Он установил следующее два куска металла (разделенные растворами, способными проводить электрический заряд) можно расположить таким образом, что по соединяющей их проволоке пойдет ток электрических зарядов , или электрический ток. Вольта сконструировал первую электрическую батарею, представлявшую собой столб из 20 пар металлических пластинок двух разных металлов. Такая батарея, известная под названием Вольтова столба, явилась первым источником постоянного тока. Электрический ток в такой батарее образуется в результате химической реакции, в которой участвуют оба металла и разделяющий их раствор. [c.58]

    Атомные и ионные радиусы. Условно принимая, что атомы и ионы имеют форму шара, можно считать, что. межъядерное расстояние с/ равно сумме радиусов двух соседних частиц. Очевидно, если обе частицы одинаковы, радиус каждой равен У 2 Так, межъядерное расстояние в металлическом кристалле натрия й == 0,320 нм. Отсюда металлический атомный радиус натрия равен 0,160 нм. Межъядерное расстояние в молекуле Маа составляет 0,308 нм, т. е. ковалентный радиус атома натрия равен 0,154 нм. Таким образом, атомные радиусы одного и того же элемента зависят от типа химической связи. Величины ковалентных радиусов зависят также от порядка химической связи. Например, при одинарной, двойной и трой- [c.152]


    Углеводородные смазки готовят путем загущения высоковязких жидких минеральных масел твердыми углеводородами—церезинами и парафинами. Углеводородные смазки имеют такие ценные качества, как высокая химическая стабильность и водоупорность, что делает их высококачественными защитными смазками. Большую роль играет способность углеводородных смазок сохранять свою структуру и свойства после расплавления и последующего охлаждения. Это дает возможность наносить эти смазки на защищаемые металлические детали в расплавленном состоянии. [c.190]

    При взаимодействии металлов в расплавленном состоянии (при пайке п сварке) образуются твердые растворы (сплавы) или химические металлические соединения (интерметаллиды). Образование сплава или соединения зависит от соотношения свойств кон- [c.15]

    Химические металлические соединения подчиняются обычным правилам валентности, могут быть постоянного и переменного состава. Благодаря разнообразию типов межатомной связи и кристаллической структуре интерметаллиды обладают щирокой гаммой физико-химических, электрофизических и других свойств. [c.16]

    Не - Ме тНгО пе химической металлические или [c.22]

    Наряду с системами, для которых законы Фарадея оправдываются количественно, существуют и такие, где возможны отклонения от этих законов. Так, например, расчеты по законам Фарадея окажутся ошибочными в случае электролитической ванны, состоящей из двух платиновых электродов, погруженных в растнор металлического калия в жидком аммиаке. Такой раствор, как проводник со смешанной электропроводностью, обладает заметной металлической проводимостью, и значительная доля электронов в процессе электролиза способна непосредственно переходить с электрода в раствор, не вызывая никакого химического превращения. Подобные же явления наблюдаются при прохождении тока через газы. Одиако такие системы уже не будут истинными электрохимическими системами, состоящими только из проводников первого и второго рода. В истинных электрохимических системах переход электронов с электрода в раствор и из раствора на электрод обязательно связан с химическим превращением и, следовательно, полностью подчиняется законам Фарадея. Законы Фарадея, являясь, таким образом, естественным и неизбежным результатом самой природы электрохимического превращения, должны в то же время рассматриваться как наиболее надежный критерий истинности электрохимических систем. [c.282]

    Поэтому активация более твердого материала, определяемая характером и интенсивностью его пластической деформации, будет обусловливать процесс образования ме/кду атомами соединяемых поверхностей металлов химических (металлических) связей и процесс образования соединения в целом. [c.203]

    Высокая прочность соединений, полученных за время сварки 10 сек, обусловлена тем, что в момент нагружения металлических образцов, соединяемые поверхности которых геометрически неоднородны, имеет место (как это было при соединении одноименных материалов) интенсивная пластическая деформация микронеровностей обработки. Скорость вступления атомов соединяемых поверхностей в состояние физического контакта, определяемая главным образом пластичностью меди, будет превосходить интенсивность образования между атомами химических (металлических) связей, которая определяется частотой выхода в зону физического контакта дефектов кристаллической решетки со стороны никеля. Если учесть, что представленные кривые развития пластической деформации никеля на начальных этапах процесса (как это было в случае соединения одноименных материалов) не отражают характера распределения общей накопленной деформации менаду микронеровностями обработки и объемом образца в целом, то становится объяснимым тот факт, что прочность соединения, реализуемая за— 10 сек, достигает высоких значений. [c.204]

    Во многих случаях физическая и химическая адсорбция протекают одновременно, но одна из них является преобладающей. Так, имеются основания считать, что при нормальных температурах адсорбция жирных кислот на металлических поверхностях носит в основном физический характер, а при повышенных температурах — химический. [c.60]

    В топливах имеются сероорганические соединения, которые при высоких температурах и давлениях на контакте трения могут разлагаться с выделением серы. Сера, реагируя с металлом поверхностей трения, образует сульфиды. Химически активными по отношению к металлическим поверхностям при трении являются также фосфор, хлор и др. [c.62]

    Схватывание металлов при граничном трении может быть предотвращено также, если на их поверхностях образуются защитные слои химических соединений, отличные по своей природе от окисных. Это могут быть слои сульфидов, хлоридов, фосфидов металлов, слои металлических мыл и других веществ. [c.133]

    Вопросы химического взаимодействия металлов между собой, а также о неметаллами, если продукты их взаимодействия сохраняют металлические свойства, изучает один из разделов неорганической химии — металлохимия. [c.253]

    Фосфиды d-элементов (обычно типа МР, MPj, М3Р) имеют серый или черный цвет, металлический блеск и электропроводны. Фосфиды этого типа химически малоактивны. [c.367]


    Вследствие высокой химической активности щелочноземельные металлы хранят под керосином в запаянных сосудах (кальций обычно в плотно закрывающихся металлических банках). [c.480]

    На открытых площадках химическая аппаратура может устанавливаться или на этажерках — железобетонных и металлических, или самостоятельно — на индивидуальных и групповых фундаментах. Аппараты малого диаметра и большой высоты следует устанавливать на этажерках. [c.221]

    В, В. Марковников и В. Н. Оглоблин [41] указывают на то, что перегонка бензинов над металлическим натрием частично освобождает нефтяные дистилляты от кислородных соединений. На самом деле, каждый химик, имеющий дело с перегонкой бензина над металлическим натрием, наблюдает, что при этом происходит химическая реакция, в результате которой часть металлического натрия переходит в раствор, образуется густая сиропообразная масса, а бен.эин становится более прозрачным, чем он был до перегонки над натрием. [c.152]

    По типу химической связи бинарные соединения могут быть ионными, ковалентными, металлическими и со смешанным типом химической связи. [c.246]

    В табл. 7.15—7.17 приведены сведения о составе и режиме осаждения покрытий металлами и сплавами из электролитов, включая полиаддендные о составе и режиме получения химических, металлических и конверсионных покрытий [4]. [c.175]

    При холодной сварке давлением интенсивность пластической деформации приконтактных областей металла достигает высоких значений, в связи с чем в состояние физического контакта вступают атом].1, энергетически подготовленные к образованию между собою химических (.металлических) связей, т. е. средний энергетический уровень, приходящийся на каждый атом, вступающий в физический контакт, превосходит высоту нотоициального энергетического барьера элементарного акта взаимодействия (образования металлической связи). По этой причине прочность соединения при сварке давлением с подогревом с ограниченной деформацией, достигнутая за врелгя 10 сек, целиком предопределяется значением деформации, накопленной за это время. Следует также подчеркнуть, что упомянутая выше аналогия в своей основе имеет одинаковый лгеханизм элементарного акта взаимодействия. [c.201]

    При электроанализе определяют массу осадка, образовавшегося на электроде в результате протекания количества электричества, достаточного для полного, илн практически полного, выделения данного вещества. Образование осадка может происходить ири этом на катоде (разряд металлических ионов с выделением металла) илн на аноде (разряд анионов с образованием соответствующих солей или оксидов). Если химический состав осадка известен, нетрудно по его массе рассчитать содержание определяемого вещества в исходном растворе. Так как количество электричества, пошедшее на получение осадка, не входит в последующие расчеты, то при электроанализе выход по току определяемого вещества необязательно должен равняться 100%. Част(. тока может пойти на другие электродные реакции при том условии, что они пе изменят состава осадка и не нарушат его компактности и прочности сцепленит с электродом. С этой точки зрения можно допустить расход некоторой доли тока на выделение водорода или кислорода. Необходимо, однако, иметь в виду, что чем меньиге выход по току определяемого вещества, тем больше придется затратить времени на анализ. [c.284]

    Из уравнения (17.146) вытекает, что в общем случае на электрохимическое перенапряжение может накладываться (или даже сделаться преобладающей) концегтрационная поляризация. Для металлических электродов это может быть связано с замедленностью доставки частиц А и отвода частиц В (диффузионное перенапряжение) или с замедленностью каких-либо химических стадий, предшествующих акту переноса заряда, либо следующих за ним (реакционное перенапряжение). Для полупроводниковых электродов помимо этих возможностей появляются их аналоги па стороне полупроводника — замедленность транспортировки электронов или дырок в зону электродной реакции илн от нее (диффузионное перенапряжение) и замедлетюсть генерации пары электрон — дырка (аналог реакционного неренапряжения)  [c.380]

    Исследуемая фракция 60—150 была выделена фракционированием нефти Норио. Фракция 60—150 промывалась 75%-ной серной кислотой, 10%-ным раствором соды, водой и после сушки над хлористым кальцием перегонялась в присутствии металлического натрия, причем отбиралась фракция, кипящая в тех же температурных пределах. Для установления химического состава данной фракции нами был применен метод избирательного дегидрогенизационного катализа акад. Н. Д. Зелинского [15], [c.217]

    После окончания дегидрогенизации вышеуказанной фракции, активность катализатора проверялась и она оставалась почти прежней, Катализаты не реагировали ни с бромной водой, ни со слабым щелочным раствором перманганата калия, что указывало на отсутствие непредельных углеводородов в катализатах, Катализат сушился и перегонялся над металлическим натрием, затем определялись константы и производилось его деароматнзация, как это показано выше, Деароматизированный катализат после соответствующей промывки и сушки перегонялся над металлическим иатрнем и определялись е1о физические свойства. Вычисление содержания циклопентановых углеводородов производилось по максимальной анилиновой точке деароматизированного катализата и перечислялось на исходную фракцию. Данные, полученные иами, ио содержанию химического состава фракции 60—150° мирзаанской нефти, приведены в табл. 6. [c.227]

    Роль комплексообразователя может играть любой элемент периодической системы. В соответствии со своей химической природой неметаллические элементы обычно дают анионные комплексы, в которых роль лигандов играют атомы наиболее электроотрицательных элементов, например ИРРеК Кз(Р04 , KslPS I Что же касается типичных металлических элементов (щелочных и щелочноземельных ме-тал.лов), то способность к образованию комплексных соединеиий с не рганическими лигандами у них выражена слабо. Имеющиеся [c.95]

    Гк диморфные превращения могут сопровождаться и существенными изменениями типа химической связи. Так, в алмазе связи ко-валенгные, в графите внутри слоя — ковалентно-металлические, а между слоями — межмолекулярные. [c.111]

    Поскольку металлическая связь ненасыщаема и ненаправлена, мета. лы имеют координационные решетки с максимально плотной упаковкой. Как указывалось выше (см. рис. 65), для металлических простых веществ самых разнообразных по химической природе элементов наиболее типичны три типа кристаллических решеток кубическая гранецентрированная (к. ч. 12), гексагональная (к. ч. 12) и ку()ическая объемноцентрированная (к. ч. 8). Для большинства металлов характерна аллотропия. Это прежде всего связано с тем, что энергии кристаллических решеток различных металлических структур близки. Полиморфизм чаще проявляется у ii- и /-элементов (в особенности 5/), чем у S- и р-элементов. Это обусловлено энергетической близостью п — 1) d-, ns-, пр-состояний у ( -элементов и близостью 5/-, bd-, 7з-состояний у 5/-элементов. [c.233]

    В зависимости от типа менее электроотрицательного, чем кремний, элемента тип связи в силицидах изменяется от ионно-ковалентного до металлического. Силициды X- и -элементов I и II групп, например Са231, СаЗ и Са312,— полупроводники. В химическом ошошении силициды этого типа неустойчивы. Они более или менее легко разлагаются водой и особенно кислотами. [c.412]

    И свиь ец — металлы. Изменение типа химической связи от преимущественно ковалентной к металлической сопровождается понижением твердости простых веществ. Так, германий довольно тверд и хрупок, свннед же легко прокатывается в тонкие листы. [c.423]

    Усиление металлических признаков у простых веществ в ряду Ое — 5п — РЬ отчетливо наблюдается и в характере изменения их химических свойств. В обычных условиях Ое и 8п устойчивы по отношению к воздуху и воде. Свинец на воздухе окисляется — покрывается синевато-серой оксидной пленкой, поэтому не имеет металлического блеска. При нагревании Ое, 5п и РЬ взаимодействуют с большинством неметаллов. При этом образуются соединения Ое(1У), 5п(1У) и РЬ(П), например ОеОз, ЗпОа и РЬО ОеС14, 5пС14 и РЬС12. [c.423]

    Металлические галлий и его аналоги получают при довольно сложной химической переработке полиметаллических руд. После много-кратой переработки и очистки из руд выделяют их оксиды или хлориды Последние химическим или электрохимическим способом восстанавливают до металлов. Галлий и его аналоги легко сплавляются со многими металлами. При этом части образуются эвтектические сплавы с низкими температурами плавления. Например, сплав 18,1% 1п с 41 %В1, 22,1 % РЬ, 10,6% 5п и 8,2% Сс1 плавится всеголишь при 47 С  [c.463]

    Как и в других главных погрупПах, в ряду рассматриваемых элементов с увеличением порядкового номера энергия ионизации атомов уменьшается, радиусы атомов и ионов увеличиваются, металлические признаки химических элементов усиливаются. [c.470]


Смотреть страницы где упоминается термин Химическая металлическая: [c.22]    [c.71]    [c.84]    [c.157]    [c.205]    [c.11]    [c.33]    [c.191]    [c.203]    [c.103]    [c.325]    [c.393]    [c.451]   
Неорганическая химия (1987) -- [ c.100 ]

Неорганическая химия (1978) -- [ c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Агеев Природа химической связи в металлических сплавах

Введение. О развитии физико-химической механики металЧасть первая Облегчение деформации металлов в растворах поверхностноактивных веществ Деформация металлических монокристаллов в присутствии поверхностно-активных веществ

Выбор химических реагентов для защиты от коррозии подземных металлических трубопроводов в местах локального нарушения изоляционного покрытия

Д р а к и и. Изучение электродиффузии как метод исследования химического взаимодействия в жидких металлических растворах

Защита от коррозии. Электрохимические способы защиты протекторная, катодная, электродренаж. Применение ингибиторов. Металлические покрытия (катодные и анодные). Защитные химические пленки (оксидные и др.). Электролитические конденсаторы. Лакокрасочные и другие неметаллические покрытия

Коррозия и защита металлических и неметаллических строительных конструкций и емкостей в химической промышленности

Металлические и оксидные покрытия деталей из алюминия и его сплавов, наносимые химическим способом. Табл

Металлические и оксидные покрытия деталей из углеродистой стали, наносимые химическим способом. Табл

Металлические и оксидные покрытия из меди и медных сплавов, наносимые химическим способом. Табл

Металлические покрытия в химическом машиностроении

Металлические порошки химическое осаждение

Металлический плутоний химические свойства

Методы анализа растворов, применяемых для получения металлических покрытий химическим способом

Методы нанесения металлических 10.3. Контроль коррозии химического покрытий оборудования

Обобщение химических и физических свойств. Металлическое состояние

Оборудование для процессов химического осаждения металлических покрытий Список литературы

Окраска металлических конструкций,. находящихся в зонах промышленных и химических воздействий

Перенапряжение перехода на ионно-металлическом электроде при наложении предшествующей или последующей химической реакции

Подготовка металлической поверхности химическим способом

Покрытия металлические, полученные химическое восстановление

Получение металлических покрытий путем химического восстановления в растворах

Посуда химическая металлическая

Примитивные типы химического взаимодействия в металлических системах

Свойства термопар, составленных из различных металлических проводников и химически чистой платины

Тара для упаковки, транспортирования и хранения химических продуктов, поставляемых сельскому хозяйству Металлическая тара

Типы химических связей ковалентная (полярная и неполярная), ионная, водородная, металлическая. Примеры соединений со связями различных типов

Уран металлический химические свойства

Физико-химические аспекты адгезии металлических поверхностей к лакокрасочным покрытиям и ее стабилизации в сероводородсодержащих водных средах

Физико-химические условия проявления адсорбционного действия расплавленных металлических покрытий

Физико-химический анализ металлических систем Агеев, О. Г. Карпинский, Л. А. Петрова. Стабильность р-твердого раствора сплавов титана с ниобием и вольфрамом

Физико-химический анализ металлических сплавов

Физические и химические свойства нафтеновых кислот. Применение нафтеновых кислот и их металлических солей

ХИМИЧЕСКИЕ РЕАГЕНТЫ, ПРИМЕНЯЕМЫЕ ДЛЯ ЗАЩИТЫ ОТ КОРРОЗИИ ПОДЗЕМНЫХ МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ

Химическая связь металлическая

Химические и электрохимические методы обработки металлической поверхности

Химические методы осаждения металлических покрытий

Химические способы подготовки металлической поверхности под окраску (преобразователи ржавчины)

Химические средства для обработки металлических поверхностей

Химическое и электрохимическое окисление металлического висмута до трехвалентного состояния

Электролитическое и химическое полирование металНеэлектролитические способы нанесения металлических покрытий

Элементы химические металлические



© 2025 chem21.info Реклама на сайте