Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температурный предел

    Температурные пределы воспламенения — температуры, при которых образуются насыщенные пары вещества в конкретной [c.11]

    Важнейшей характеристикой нефтяных смесей является фракционный состав, определяемый температурными пределами выкипания всей смеси и составляющих ее узких фракций при соответствующих отборах. Фракционный состав играет решающую роль при составлении и разработке технологических схем процесса первичной перегонки нефти и наряду с углеводородным и элементным составом нефти существенно влияет также на выбор схем последующих технологических процессов нефтепереработки. На основе фракционного состава нефти определяется потенциальное содержание в нефти целевых фракций, а на основе фракционного состава нефтяных фракций рассчитываются важнейшие эксплуатационные характеристики нефтепродуктов. [c.18]


    Температурные пределы воспламенения паров жидкостей экспериментально определяют по ГОСТ 12.1.022—80, а рассчитывают по методике, приведенной в рекомендуемом приложении ГОСТ 12.1.017—80. [c.12]

    ТС-1 — продукт прямой перегонки сернистых нефтей, температурные пределы выкипания — 150—250° С. [c.84]

    Обычно процесс постепенной перегонки рассчитывают с целью определения выхода и состава дистиллята или остатка с заданными характеристиками качества. При заданном давлении перегонки Р необходимо определить температурные пределы перегонки, а при заданной температуре — конечное давление процесса или давление насыщенных паров остатка. Расчет по уравнению (1.10) выполняют методом графического интегрирования, а по уравнениям (1.11) и(1.12) — итерационным методом. [c.61]

    Температурные пределы воспламенения Температура + +  [c.14]

    Физико-механические свойства и температурные пределы при менения некоторых полимерных материалов приведены в табл 2.10 [24]. [c.66]

    Второй метод основывается на циркуляции через стационарный слой катализатора синтез-газа и масла. Теплота реакции в этом способе отводится в основном маслом, которое имеет значительно более высокую теплоемкость, чем газ, охлаждается вне реактора и возвращается в цикл. Следовательно, здесь имеется прямой теплообмен. Используемое масло является фракцией продуктов синтеза. Часть теплоты реакции может отводиться за счет испарения масла, что зависит от температурных Пределов ки,пения выбранного масла [57]. Обычно масло подбирается с таким расчетом, чтобы за счет испарения отводилась примерно половина тепла реакции. [c.116]

    Если определять смачивающую способность таких солей сульфокислот с учетом действия всегда находящейся в соли сульфокислот поваренной соли и наносить значения концентрации в г/л как функцию числа углеродных атомов или как ф/ункцию температурных пределов разгонки исходных углеводородов, то получается кривая, изображен-на5 на рис. 71. Эта кривая показывает, что смачивающая способность сначала возрастает с ростом величины молекулы, затем при определенной величине молекулы достигает своего максимума и после этого снопа падает. [c.410]

    При слишком коротком или слишком длинном алкильном остатке смачивающее действие неудовлетворительно. Максимум смачивающего действия достигается тогда, когда число углеродных атомов равно 15— 16, соответственно температурному пределу выкипания углеводородной смеси. [c.411]


    Топливо Т-1 представляет собой продукт прямой перегонки малосернистой нефти, температурные пределы выкипания —150— 280° С  [c.84]

    Топливо Т-7 представляет собой продукт прямой перегонки сернистых нефтей, подвергнутый гидроочистке. Температурные пределы выкипания 150—250° С. Топливо Т-7 может применяться, как в чистом виде, так и с противоизносными присадками. Топливо Т-6 представляет собой продукт прямой перегонки нефти. Температурные пределы выкипания 195—315 X. [c.85]

    Топливом широкой фракции является керосин марки Т-2 с температурными пределами выкипания 60—280° С получают его прямой перегонкой сернистых нефтей. [c.85]

    Температурные пределы смесей на земле, °С  [c.87]

    Как было отмечено выще, тепловая энергия горячих нефтепродуктов на установках АВТ используется также для подогрева химически очищенной и промышленной теплофикационной воды. Например, на установке АВТ производительностью 3 млн. т/год нефти за счет тепла гудрона нагревается 111 ООО кг/ч теплофикационной воды с 70 до 130 °С. На этой же установке за счет тепла третьего циркуляционного орошения вакуумной колонны дополнительно нагревается в таких же температурных пределах 19 800 кг/ч теплофикационной воды. Теплофикационная вода в зимних условиях отапливает промышленные и коммунально-бытовые помещения тем самым исключается расход большого количества пара низкого и среднего давления. [c.215]

    Температурные пределы взрывоопас-  [c.107]

    Температурные пределы прокачивае-мости масел для реактивных двигателей [c.171]

    Масла МК-6 и МС-6 — узкого фракционного состава. Уровень исходной вязкости у них несколько ниже, чем у МК-8 (6 сст вместо 8), но по смазывающим свойствам они практически не отличаются от масла МК-8. Благодаря узкому фракционному составу масла МС-6 и МК-6 имеют более низкую температуру застывания (—60° С вместо —55° С для МК-8) и более низкое значение вязкости при —40° С (3000 сст вместо 7000 сст для МК-8). Температурные пределы кипения масел МС-6 и МК-6 290—360° С, в то время как у масла МК-8 — 260- 420° С. [c.172]

    Температурные пределы определения теплоемкости, °С Теплоемкость, ккал/ (кг-град)  [c.243]

    Температура, °С Температурные пределы образования взрывоопасных смесей, С  [c.244]

    Эти фракции далее, каждая в отдельности, перегонялись в вакууме при остаточном давлении 20 мм. После перегонки фракции кипящие в одинаковых температурных пределах, объединялись. В результате перегонки были получены следующие широкие фракции ароматических углеводородов  [c.38]

    Другой особенностью расчета процесса ректификации нефтяных смесей является необходимость комплексной оценки свойств получаемых продуктов. Как известно, расчет процесса ректификации выполняется с целью определения таких условий его проведения, которые обеспечивают получение продуктов с заданными эксплуатационными свойствами. В то же время большинство эксплуатационных свойств нефтепродуктов определяется не температурными пределами выкипания получаемых фракций, лежащих в основе термодинамического расчета процесса ректификации. Эго вызывает необходимость использоваиия дополнительных расчетов для перехода от эксплуатационных свойств нефтепродуктов к температурам выкипания нефтяных смесей или для обратных пересчетов. [c.88]

    Указанные фракции сначала промывали 75%-ной серной кислотой, 10%-ным раствором соды и водой, а после сушки над хлористым кальцием перегоняли в присутствии металлического натрия в тех же температурных пределах. [c.29]

    Выделенные ароматические углеводороды промывались, дистиллированной водой, слабым раствором соды, опять водой, сушились над хлористым кальцием и перегонялись в--присутствии металлического натрия в узких температурных пределах. [c.78]

    Для последующей переработки стабилизированные бензины подвергаются вторичной перегонке на фракции, направляемые как сырье процессов каталитического риформинга с целью получения высокооктанового компонента автобензинов или индивидуальных ароматических углеводородов — бензола, толуола и ксилолов. При производстве ароматических углеводородов исходный бензин раз — де. яют на следующие фракции с температурными пределами выкипания 62 —85°С (бензольную), 85— 105 (120 °С) (толуольную) и 105 (120)— 140 °С (ксилольную). При топливном направлении переработки прямогонные бензины достаточно разделить на 2 фракции н.к.-85 °С и 85-180 °С. [c.189]

    К недостаткам такого метода следует отнести то, что обычно за непревращенное сырье принимают фракцию продукта реакции, идентичную исходному сырью по температурным пределам выки — пания, что не совсем полностью соответствует действительности. [c.19]

    Признаком, характеризующим вероятное поведение какой-либо смеси углеводородов при сульфохлорировании, является удельный вес гидрированного продукта (с учетом его температурных пределов кипения). Так, например, когазин И с температурными пределами кипения 200—370°, который является наиболее падходящим материалом, имеет после очистки гидрированием под высоким давлением удельный вес примерно 0,770 при 20°. Между тем фракция гидрированной нефти с теми же температурными пределами разгонки в зависимости от происхождения нефти имеет обычно удельный вес от 0,815 до 0,830. Чем выше удельный вес углеводородного сырья, тем менее оно пригодно для сульфохлорирования. [c.397]


    Углеводороды, выкипающие при температурах 150—300° С, называют керосиновой фракцией. В свою очередь бензиновую или керосиновую фракции хможно разделить на более узкие фракции, т. е. группы углеводородов, выкипающие в более узких температурных пределах. Наприхмер, керосиновую фракцию можно разделить на 50-градусные фракции и по количеству входящих в каждую фракцию углеводородов анализировать состав керосина. [c.10]

    В настоящее время еще нельзя достоверно назвать марки топлив для сверхзвуковых пассажирских самолетов. Но можно высказать предположение о том, какими они будут. Вероятнее всего это будут керосины как продукты прямой перегонки, так и гидрокрекинга, подвергнутые тщательной гидроочнстке. Из топлива будут максимально удалены гетероорганические соединения микрозагрязнения и вода. Углеводородная часть будет состоять главным образом из алканов и нафтенов. Температурные пределы выкипания будут определяться условиями применения на самолете и экономическими соображениями. Можно предполагать, что фракционный состав топлива будет находиться в пределах 150—300° С. [c.115]

    Качество полученного алкилата будет лучше, а расход кислоты меньше, если работать с эмульсией углеводорода в кислоте, а не наоборот. Обычно при низких температурах получаются алкилаты лучшего качества. Реакции алкилирования в присутствии Н2804 особенно чувствительны к температуре. Оптимальный температурный предел от 5 до 13 °С, при более низких температурах повышается вязкость Н2804, при более высоких увеличивается расход Н2Й04, а качество алкилата ухудшается. Оптимальные температуры алкилирования с НЕ от 27 до 43 °С. [c.261]

    Для исследования была взята средняя проба 1 участка мир.заанекой нефти, из которой фракционной перегонкой была выделена фракция с температурой кипения 150—200°. Фраг уня подвергалась промывке 75%-ной серной кислотой, 5%-иым раствором соды и дистиллированной водой, затем сушилась над хлористым кальцием и перегонялась в присутствии металлического натрия в тех же температурных пределах. Для исследуемой фракции определялись физические свойства максимальная анилиновая точка, удельный вес и показатель лучепреломления, значення которых приведены в табл. 1. Применяемый в опытах анилин нмел температуру замерзания —6,3°. [c.109]

    Исследуемая фракция 60—150 была выделена фракционированием нефти Норио. Фракция 60—150 промывалась 75%-ной серной кислотой, 10%-ным раствором соды, водой и после сушки над хлористым кальцием перегонялась в присутствии металлического натрия, причем отбиралась фракция, кипящая в тех же температурных пределах. Для установления химического состава данной фракции нами был применен метод избирательного дегидрогенизационного катализа акад. Н. Д. Зелинского [15], [c.217]

    СОСТОИТ в том, чтобы получить наибольший выход промежуточного вещества А , то в случае, когда энергия активации второй реакции больше, чем первой, оптимальным является падающий температурный профиль по длине реактора. Здесь снова при исходной смеси, состоящей из чистого вещества А , оптимальная температура на входе бесконечна, так что необходимо ограничить температуру верхним пределом Т. Нижний температурный предел в этой задаче также существен. Действительно, увеличение температуры способствует протеканию реакции с большей энергией активации А А ) за счет другой реакции (Л1 -> 2). и потому мы могли бы добиться практически полного превращения А ь А 2, проводя процесс в бесконечно длинном реакторе при бесконечно малой температуре, что, разумеется, бессмысленно. Нри > О существует оптимальная длина реактора, с превышением которой выход вещества А, уменьшается. Некоторые оптимальные профили показаны на рис. IX.6, из которого следует, что по мере увеличения длпны реактора максимальная температура Т поддерживается на все более коротком отрезке и падение температуры от Т до Т . становится все круче. Для большей ясности деталей кривые на рис. IX.6 проведены с общей абсциссой 2 = при этом точки А, В,. . Е обозначают вход в слой соответствующей длины. Точка Е отмечает вход в слой наибольшей длины, который выгодно использовать при данной минимальной температуре [c.269]

    Нижнего температурного предела можно не вводить, если при поиске оптимума учитывается стоимость едишщы времени контакта. — Прим. перев. [c.269]

    Поскольку нефть и нефтепродукты представляют собой многокомпонентную непрерывную смесь углеводородов и гетероатом — ны> соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определен — ны (и физическими константами, в частности, температурой кипения при данном давлении. Принято разделять нефти и нефтепро — дук ы путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты при — пято называть фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постепенно повышающ,ейся температуре кипения. Следовательно, нефть и ее фракции характеризуются ие температурой кипения, а температурными пределами начала кипения (н.к.) и конца кипения (к.к.). При исследовании качества новых нефтей (т.е. составлении технического паспорта нефти) фракцион — ный состав их определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками (например, на АРН — [c.59]

    Низкотемпературные свойства. В отличие от бензинов в состав дизе/лных топлив входят высокомолекулярные парафиновые углево — дороды нормального строения, имеющие довольно высокие темпера — туры плавления. При понижении температуры эти углеводороды вы — падают из топлива в виде кристаллов различной формы, и топливо мутнеет. Возникает опасность забивки топливных фильтров кристаллами парафинов. Принято считать, что температура помутнения характеризует нижний температурный предел возможного применения дизельных топлив. При дальнейшем охлаждении помутневшего топлива Kpn Tavwvbi парафинов сращиваются между собой, образуют пространственную решетку, и топливо теряет текучесть. Температура застывания — величина условная и используется для ориентировочного определения возможных условий применения топлива. Этот пока атель принят для маркировки дизельных топлив на следующие 3 [c.117]

    Воспламеняемость реактивтнлх топлив обычно характеризуется концентрационными и температурными пределами воспламенения, самовоспламенения и температурой вспышки в закрытом тигле и др. По ГОСТу нормируется только температура вспышки (для ТС-1 и РТ 28, для Т-1>30 и Т-6>60 °С), а определение остальных перечисленных выше показателей предусматривается в комплексе квалификационных методов испытаний реактиви[а1х топлив. [c.122]

    Перегонка (дистилляция) — это процесс физического разделения нефти и газов на фракции (компоненты), различающиеся друг ст друга и от исходной смеси по температурным пределам (или температуре) кипения. По способу проведения процесса различают [ ростую и сложную перегонку. [c.160]

    Из массообмениых процессов фракционирования многоком — понентных смесей в производствах смазочных масел наибольшее распространение получили экстракционные процессы, основанные на использовании различной растворимости углеводородов в растворителях. В этих процессах фракционирование масляного сырья осуществляется не по температурным пределам кипения, а по химическому углеводородному составу. Одни групповые химические компоненты сырья хорошо растворяются в выбранном для данного экстракционного процесса растворителе, а другие, наоборот, плохо или совсем не растворяются. [c.208]

    Под глубиной превращения сырья принято считать суммар — н з1Й выход продуктов, отличающихся от исходного сырья фракци — о 1НЫМ составом. При крекинге традиционного сырья — вакуумного гг зойля фр. 350—500 °С — таковыми продуктами являются газ + б Шзин + дизельная фракция (легкий газойль) + кокс. Тяжелый газойль, выкипающий при тех же температурных пределах, что и сырье, обычно принимают как за непревращенную часть сырья, хотя от отличается от последнего по химическому составу. [c.124]

    Граничная кривая СЕ насыщенного водяного и перегретых нефтяных паров асимптотически приближается к некоторому температурному пределу, значение которого проще всего определяется подстановкой Z оо в уравнение (11.119), приводящей к Рг ->-р- Равенство Рг = р тз определяет предельную температуру пр граничной кривой СЕ уравнение ее асимптоты = = сопз1. [c.119]


Смотреть страницы где упоминается термин Температурный предел: [c.341]    [c.229]    [c.82]    [c.68]    [c.295]    [c.64]    [c.12]   
Противопожарная защита открытых технологических установок Издание 2 (1986) -- [ c.205 ]




ПОИСК







© 2025 chem21.info Реклама на сайте