Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дислокации источники

    Теория дислокации была создана в результате работ Тейлора и Френкеля в тридцатые годы, но не могла получить развития в основном потому, что не был понятен источник возникновения дислокаций. Действительно, при деформации дислокации уходят из тела, и если бы они не возникали по какому-либо механизму, то необходимое для деформации напряжение резко бы возрастало. [c.280]

    При низких температурах эффективны механизмы, основанные на скольжении дислокаций, которое может облегчаться в присутствии поверхностно-активных сред. Теория адсорбционного пластифицирования [291] объяснила эти эффекты на основе представлений о снижении потенциального барьера, препятствующего выходу дислокаций на поверхность с образованием на поверхности ступеньки, и об облегчении начала работы приповерхностных источников дислокаций благодаря снижению свободной поверхностной энергии. Это дает возможность ориентировочно оценить те условия, в которых аналогичные эффекты могут иметь место в природе. Это та область режимов деформации, когда в наборе активационных энергий- преобладают компоненты, связанные с поверхностным барьером [255],. равным Ь а, где Ь — вектор Бюргерса и о — свободная поверхностная энергия минерала. В этом случае отношение скоростей деформации в присутствии активной среды и на воздухе равно [c.88]


    Если предположить, что первый этап, так называемая объемная диффузия, не является определяющим, можно сосредоточить внимание на остальных двух этапах. Если на поверхности уже имеется ступень, процесс роста поверхности хорошо описывается методом, предложенным впервые в [51]. Этот метод, однако, не дает достаточно удовлетворительного ответа на вопрос о природе возникновения первичной ступени на поверхности. Эта трудность была преодолена в 1949 г. Франком, который высказал предположение, что источником ступеней при росте плоскостей кристалла являются дислокации. Дислокация представляет собой оц-ределенный тип дефекта в строении кристаллической решетки. В точке дефекта энергетический барьер значительно меньше, поэтому захват частиц и, следовательно, возникновение новой плоскости облегчаются. Дислокация, которая возникает в некоторой [c.266]

    Суш ественным источником неоднозначности и неопределенности кинетики и механизма реакций с участием твердых тел, даже в случае монокристаллов, является фактор неоднородности, т. е. различие свойств атомов и ионов, расположенных на вершинах, ребрах и гранях кристал-пов различия свойств атомов и ионов граней с разными индексами различия, обусловленные дефектами — вакансиями, междоузельными атомами и ионами, дислокациями, ионами с аномальной валентностью, примесными центрами, растворенными в кристаллах или адсорбированными на их поверхности [14]. [c.12]

    Рассмотрим массообмен между частицей и сплошной средой, когда сопротивление переносу сосредоточено в самой частице. В этом случае изменением концентрации во внешнем потоке можно пренебречь. Такие задачи будем называть внутренними. Так, если к внешним задачам относили определение коэффициентов массоотдачи, то к внутренним — нахождение кинетических коэффициентов роста и зародышеобразования кристаллов. Вид кинетических коэффициентов определяется из теорий роста, экспериментальных данных. Все существующие теории роста кристаллов можно разделить на три категории [33] 1) теории, описывающие рост кристаллов с чисто термодинамической точки зрения, имеющие дело с идеальными кристаллами (без дефектов решетки) 2) дислокационные теории, учитывающие, что источником ступеней при росте плоскостей кристалла являются дислокации 3) теории, описывающие рост кристалла, как кристаллохимические реакции на поверхности. [c.262]

    Метод декорирования основан на образовании очень маленьких частиц в активных центрах твердых тел. Обычно при нагреве кристалла до определенной температуры вдоль дислокационных линий появляются частицы, которые можно наблюдать либо в проходящем, либо в рассеянном свете. Декорирование дислокаций возможно из-за более быстрой диффузии частиц вдоль дислокационных линий, преимущественного зарождения частиц на дислокациях, способности дислокаций служить источниками вакансий. Декорирующими частицами не всегда являются частицы примеси. Известны два способа декорирования деф тн ой структуры кристаллов. В одном случае исходный образец помещали в кварцевую ампулу, в которой создавали вакуум 0,66 Па. Затем ее запаивали, нагревали до температуры 350°С и выдерживали 1 ч. Во втором случае дефекты в кристалле декорировались после облучения образцов рентгеновским излучением. Вдоль дислокационных линий появлялись микроскопические поры. [c.160]


    Следует, иметь ввиду, что если внешние условия (например, температура) меняются быстро, стоки и источники вакансии (внешняя поверхность, границы зерен, поры, дислокаций) не успевают восстановить их равновесную концентрацию, что существенно скажется на скорости диффузии. [c.357]

    Франк (1949 г.) предположил, что простейшим источником ступеней могут служить винтовые дислокации. По мере того как атомы оседают на такой гладкой ступеньке, она начинает закручиваться, поскольку конец ее закреплен на дислокации. Скорость движения ступеньки не зависит от ориентации (если Хц X), благодаря чему все ее точки, кроме прилегающих к дислокации, перемещаются с одной и той же линейной скоростью в итоге возникает некоторая спираль, образующая на кристалле-подложке невысокий конус. Спираль закручивается до тех пор, пока кривизна в центре не достигает р7, после чего вся спираль вращается сохраняя свою форму. [c.481]

    Если в пластичных образцах (металлы) прочность НК понижают в основном дислокации и их источники, то в хрупких образцах (полупроводники, диэлектрики) наиболее опасны концентраторы напряжений (см. гл. IV) и в первую очередь поверхностные дефекты. [c.487]

    На стадии легкого скольжения основной вклад в деформацию дают дислокации, вышедшие на поверхность кристалла, что подтверждается экспериментально [10]. На этой стадии (площадка текучести на кривой напряжение — деформация) пластическая деформация растяжения отожженного технического железа [33] происходит путем лавинообразного течения, как это установлено наблюдениями линий скольжения на поверхности и методом дифракционной электронной микроскопии. По данным работы [34 ], в ходе легкого скольжения сдвиг не продолжается по тем плоскостям, где он уже происходил, так как легче активировать источники дислокаций в новых (неупрочненных) плоскостях скольжения. [c.46]

    Известно, что рост кристаллов тесно связан с винтовыми дислокациями. Однако, исследования кинетики испарения кристалла путем удаления спиральных слоев, высота которых соответствовала вектору Бюргерса порядка 2-10 см [41], показали, что можно пренебречь влиянием энергии деформации решетки в точке выхода на поверхность винтовой дислокации на скорость испарения. Авторы работы [41 ] считают, что расстояние между ступенями, порожденными винтовой дислокацией, быстро растет, достигая такой же величины, как и в случае, когда единственным источником моноатомных ступеней является край кристалла. Поэтому на таких дислокациях ямки травления не образуются. [c.49]

    Поскольку JV представляет собой объем тела, растворяющийся с единицы поверхности за единицу времени, а коэффициент а = 1/и где V — активационный объем дислокаций при пла-. стическом течении, по существу численно может быть охарактеризован как максимально возможная динамическая плотность дислокаций (т. е. плотность их в момент течения), то выражение (211) формально можно интерпретировать следующим образом. Дополнительный поток дислокаций при хемомеханическом эффекте образуется в результате насыщения дислокациями поверхностного слоя до максимально возможной динамической плотности, а затем стравливания этого слоя со скоростью химического растворения. Насыщение дислокациями растворяющегося слоя возможно ввиду несравнимых величин скоростей размножения и движения дислокаций, с одной стороны, и растворения тела с другой стороны. Так, при обычных значениях скоростей коррозии стравливание одного моноатомного слоя занимает секунды и более секунды, а дислокационные процессы совершаются с околозвуковыми скоростями. Образование поверхностных источников дислокаций в процессе реализации хемомеханического эффекта приводит к быстрому насыщению поверхностного слоя дислокациями, что создает условия для множественного скольжения (в том числе поперечного скольжения дислокаций) и, следовательно, для разрушения ранее сформировавшихся плоских скоплений, т. е. для релаксации микронапряжений и разупрочнения. [c.126]

    Образование дислокаций. Как легко показать, для образование I источника дислокаций типа Франка-Рида с двумя концами тре- [c.27]

    Таким образом, чистые поверхности можно рассматривать как потенциальные источники дислокаций. Напротив, сплошная пленка [c.27]

Рис. 17. Электронная микрофотография стали -21 Сг 6 N1—9 Мп при деформации 1%. Видны источники дислокаций на границах зерен и размытые узлы в местах соединения дислокаций Рис. 17. <a href="/info/73091">Электронная микрофотография</a> стали -21 Сг 6 N1—9 Мп при деформации 1%. Видны источники дислокаций на границах зерен и размытые узлы в местах соединения дислокаций
    При описании схемы экранирования было обращено внимание на особенности размещения кварцевой втулки в экране. По мере снижения уровня расплава она должна перемещаться вместе с ним, обеспечивая непрерывное экранирование нижней части слитка. Это одно из назначений кварцевого цилиндра. Нарушение этого условия непременно вызовет изменение тепловых условий на фронте кристаллизации и может быть источником возникновения дислокаций. В связи с этим были поставлены специальные опыты с измененной схемой экранирования. Монокристаллы выращивались в условиях неполного экранирования — расплав располагался ниже втулки иа 5—7 мм. Используя различные сочетания температур и скоростей подъема, вырастить качественный слиток не удавалось. Плотиость дефектов была в пределах 5- 10 —5-10 см-  [c.231]

    Любопытно заметить, что такое же уравнение определяет равновесие Двойника, созданйбго в неограниченном кристалле дислокациями, источник которых наудится в интервале (-До> До) вблизи начала координат. Для этого доста10чно считать, что внешняч нагрузка есть четная функция х, а рождающиеся две дислокации противоположных знаков одновременно появляются в точках х = До  [c.63]


    После решения организационных вопросов можно приступить к проекту размещения растений в конкретных точках интерьера. В главе VI можно ознакомиться с примерами рекомендуемых планировочных решений. Нужно приобрести декоративные емкости для посадки растений (или в крайнем случае заказать их в мастерских по своим эскизам), а также необходимое оборудование и инвентарь. Желательно иметь карты термического и светового режима всех помещений и располагать сведениями о дислокации источников тепла и света. При отсутствии таковых первичные данные о темпе-рат фе, влажности и ориентации света можно получить самим с помощью трех простых приборов термометра, психрометра и компаса. Еще лучше приобрести и люксметр марки Ю-16 или -17 для измерения освещенности в отдаленных от источника света точках интерьера. Замеры нужно делать как в солнечные, так и в пасмурные дни, в особенности в критический для растений осенне-зимний период. Зная параметры микроклимата, можно пристзшить к подбору ассортимента растений. Начинающим цветоводам в этом помогут главы V и VII данной книги. Общие сведения о культуре оранжерейных растений в помещениях и информация о декоративных особенностях и деталях агротехники каждого вида изложены в главах III и IV. [c.11]

    Источниками дислокаций (до деформации) являются сегрегация примесей напряжение и дислокационные центры кристаллизации срастание раз.тично ориентированных зерен и субзерен межзеренное общение и др. В отоженном металле число дислокаций достигает Ю см . Пластическая деформация способствует увеличению плотности дислокаций на 5-6 порядков, движению дислокаций и их групп, включая границы зерен. В результате они приобретают сложную форму, увеличивается их длина, общая энергия и сопротивление скольжению. Выход дислокации на поверхность кристалла приводит к сдвигу на одно межатомное расстояние. Следовательно, суммарный сдвиг при начальной плотности дислокаций N0 = Ю5/см2 составит = Ю - Ю - 10- = 10- что соот- [c.78]

    К пассивным методам АК относят акустико-эмиссионный метод (см. 2.7), в котором используют бегущие волны (рис. В.7). Явление акустической эмиссии (от лат. emissio — испускание, излучение) состоит в излучении упругих волн материалом ОК в результате внутренней динамической локальной перестройки его структуры. Такие явления, как возникновение и развитие трещин, превращения кристаллической структуры, движение скоплений дислокаций, — наиболее характерные источники акустической эмиссии. Контактирующие с ОК преобразователи принимают упругие волны и позволяют установить наличие источника эмиссии, а при обработке сигналов, проходящих от нескольких преобразователей, — также расположение источника. [c.12]

    Третий из показанных на рис. 2.44, а импульсов соответствует процессу акселерационного типа. Когда дислокации противоположного знака сближаются и аннигилируют или дислокация выходит на поверхность кристалла и исчезает, их энергия преобразуется в упругую. Процессы сближения или выхода на поверхность дислокаций происходят с ускорением, отсюда название импульса этого типа. Энергия процесса аннигиляции дислокаций порядка Дж, длительность импульса — 10 с, ширина спектра— сотни мегагерц. Другие дислокационные источники имеют большую длительность и энергию (до 10 Дж). [c.173]

    Некоторым недостатком камер-монохроматоров, использующих для монохроматизации отражение от кристалла кварца, является присутствие паразитного излучения с длиной волны, вдвое меньшей длины волны характеристического излучения. Это не вызывает неудобств при рутинном фазовом анализе, но может быть источником неопределенностей при поисках слабо выраженной сверхструктуры. Для устранения этой неоднозначности под руководством Ю.П.Симанова была сконструирована камера-монохроматор [6], в которой для монохроматизации использовалось отражение от плоскости (111) пластически изогнутого при высокой температуре монокристалла германия. Интенсивность линий (222) в германии практически равна нулю, т.е. излучение с А /1 в монохромати-зированном пучке отсутствует. К сожалению, пластические свойства германия очень чувствительны к степени совершенства кристалла (они резко ухудшаются при уменьшении концентрац 1И дислокаций), и камеры такого типа не нашли широкого применения. Монокристаллы кварца гораздо дешевле и доступнее. [c.21]

    Большинство дефектов упаковки в пленке зарождается на границе с подложкой. Это доказывают одинаковые размеры замкнутых фигур роста (имейщих в случае ориентации (111) вид равносторонних треугольников), которые увеличиваются с увеличением толщины пленки. Дислокации, присутствующие в подложке, распространяются и в эпитаксиальный слой. Помимо этого, дополнительным источником возникновения дислокаций в пленке являются механические нарушения поверхности. Зародыши кристаллизации часто образуются на механических нарушениях. Однако наиболее важной причиной появления дефектов упаковки в осажденном слое является неполное удаление остаточного окисла с поверхности подложки до начала эпитаксиального роста. Наличие островков окисного слоя вызывает появление ступенек на поверхности подложки, которые и служат исходными участками для образования дефектов. [c.140]

    Пока можно лишь сказать, что высокая прочность пленок обусловлена отсутствием действующих источников дислокаций и ограничением перемещений ростовых дислокаций. Частично высокая прочность пленок может объясняться еще тем, что их поверхность микроскопически достаточна совершенна. По данным Билби (1958 г.), энергия, необходимая для зарождения дислокаций около идеальной поверхности, так высока, что процесс не будет происходить. Таким образом, хорошая поверхность будет предотвращать зарождение дислокаций в тонких пленках, где источники дислокаций не действуют. [c.489]

    Поверхностные-упрочненные слои, содержащие отрезки (debris) дислокаций, также могут являться экранирующими барьерами для выхода дислокаций П25 ]. Повыщенная склонность поверхностных слоев к деформационному упрочнению отмечалась М. В. Классен—Неклюдовой в 1936 г. Основываясь на явлении поверхностного упрочнения при деформировании металла И. Крамер предполагает, что стравливание упрочненного debris-слоя снижает сопротивление пластическому течению за счет запуска заблокированных поверхностных источников дислокаций. Однако противоречие состоит в том, что растворение поверхностного слоя уничтожает эти ранее существовавшие поверхностные источники, например источники типа Фишера. Между тем, еще в 1924 г. Эвальд и Поляни выдвинули общее представление об удалении поверхностных препятствий скольжению при объяснении по-вь1шения пластичности в среде растворителя. Хотя предложенное ими 1126] обозначение этого эффекта как механизм Эвальда— Поляни не является вполне удачным, поскольку его сущность не могла быть в то время расшифрована из-за более позднего появления дислокационных представлений о механизме пластической деформации, это общее представление охватывает любые виды экранирующих поверхностных барьеров и для краткости может быть названо барьерным механизмом. [c.144]

    В обобщенном виде основные положения этой теории состоят в следующем. Пластическая деформация поверхностных микрообъемов приводит к активации коррозионных процессов иа этих участках, Коррозия усиливает избирательную способность напряжений, быстрее выделяет слабые места и ускоряет их развитие. Локализация коррозионных процессов приводит к образованию коррозионных повреждений, являющихся эффективными концентраторами напряжений — источниками зарождения трещин усталости. В условиях электрохимической коррозии происходит усиленное растворение металла в острие трещины вследствие работы пары анод—острие, катод—стенка трещины. При этом коррозия значительно облегчает продвии ение трещины, помогая преодолевать препятствия в впде скопления дислокаций, границ зерен и т. п. [c.81]

    Энергия, выделяющаяся в результате ядерных реакций, на несколько порядков больше прочности химических связей, энергетического эффекта обычных химических реакций или количества энергии, необходимого для образования дефектов (дислокаций и вакантных узлов) в решетке твердых веществ. Ни однн материал независимо от его фазового состояния или внешних условий не является совершенно инертным по отношению к ядерным излучениям. Поэтому в последние годы с появлением легкодоступных источников высокой энергии химическое действие радиации активно исследовалось многочисленными учеными с самыми различными целями. Новая область радиацрюнной химии включает исследования, направленные на предотвращение ущерба от разрушающего действия радиации, на разработку методов избирательного разрушения (например, стерилизация и применение в медицине), или специфическое использование радиации для избирательного проведения химических реакций. Данная глава ограничивается рассмотрением последней из перечисленных областей радиационной химии и, в частности, выявлением возможностей использования ядерных излучений как способа проведения химических превращений в процессах нефтепереработки. [c.114]

    Мы указали пути, по которым водород из различных источников, переносимый дислокациями или путем решеточной диффузии, может накапливаться в ряде мест (в одном из. них во всех), представляющих особенности микроструктуры материала. Места наиболее существенного (критического) влияш1я водорода образуют путь разрушения. При зтогл может либо усиливаться характер разрушения, происходившего и в оотсутствне водорода, либо возникать другой тип разрушения. Все такие возможности обобщенно представлены на рис. 52. В их число мы включили [c.132]

    ЭЛЕКТРОКРИСТАЛЛИЗАЦИЯ, переход в-ва из ионизиров. состояния в р-ре или расплаве в кристаллическое в результате электрохим. р-ции. Лежит в основе всех процессов электроосаждения металлов, а также формирования слоев оксидов и труднорастворимых соед. на аиоде (напр., при образовании электролитич. защитно-декоративных покрытий, в произ-ве хпм. источников тока). Отличается от обычной кристаллизации из пара или р-ра тем, что построе-ншо кристаллич. структуры предшествует перенос заряда с электрода на ион или оба этн акта протекают одновременно. Возникновение зародышей новой фазы при Э. требует определ. пересыщения, к-рое определяется перенапряжением на электроде. Чем выше перенапряжение, тем большее число зародышей возникает в единицу времени на данной площади. Зародыши разрастаются в результате послойного роста граней. Процесс может идти с образованием двумерных зародышей илн по закону слоисто-спирального роста на винтовых дислокациях (см. Рост кристаллов). В результате линейного роста кристаллов происходит их слияние с образованием сплошного слоя электролитич. покрытия. [c.698]


Смотреть страницы где упоминается термин Дислокации источники: [c.79]    [c.79]    [c.481]    [c.40]    [c.81]    [c.87]    [c.40]    [c.81]    [c.87]    [c.194]    [c.126]    [c.29]    [c.27]    [c.28]    [c.341]    [c.63]    [c.63]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Дислокация

Интеграл Источник дислокаций

Источник двойникующих дислокаций

Стационарное течение кристалла при наличии источников дислокаций



© 2025 chem21.info Реклама на сайте