Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Объемная диффузия

    Транспорт компонента разделяемой газовой смеси через пористую основу мембраны осуществляется одновременно несколькими механизмами переноса, в зависимости от структуры матрицы, свойств веществ и термодинамических параметров процесса. В общем случае движение компонентов смеси может вызываться конвективно-фильтрационным переносом, различного вида скольжениями вдоль поверхности пор, объемной диффузией, баро- и термодиффузией, кнудсеновской диффузией (эффузией), поверхностной диффузией, пленочным течением вследствии градиента расклинивающего давления, капиллярным переносом конденсированной фазы в анизотропных структурах. Вещество в порах скелета мембраны, как показано ранее, может находиться в виде объемной газовой фазы, капиллярной жидкости и адсорбированной пленки. Для каждого из этих состояний возможно несколько механизмов переноса, взаимосвязанных между собой. Не все виды переноса равнозначны по своему вкладу в результирующий поток веществу, поэтому при вычислении коэффициента проницаемости необходимо определить условия, при которых те или иные формы движения вещества являются доминирующими [З, 9, 10, 14—16]. [c.54]


    Если нормальная, или объемная, диффузия характерна, главным образом, для макропор, кнудсеновская диффузия наблюдается в основном в переходных порах, то в микропорах имеет место активированная диффузия. Размеры микропор соизмеримы с размерами молекул, и последние проходят в поры, если обладают избыточным запасом энергии — энергией активации. Связь коэф- [c.236]

    Если предположить, что первый этап, так называемая объемная диффузия, не является определяющим, можно сосредоточить внимание на остальных двух этапах. Если на поверхности уже имеется ступень, процесс роста поверхности хорошо описывается методом, предложенным впервые в [51]. Этот метод, однако, не дает достаточно удовлетворительного ответа на вопрос о природе возникновения первичной ступени на поверхности. Эта трудность была преодолена в 1949 г. Франком, который высказал предположение, что источником ступеней при росте плоскостей кристалла являются дислокации. Дислокация представляет собой оц-ределенный тип дефекта в строении кристаллической решетки. В точке дефекта энергетический барьер значительно меньше, поэтому захват частиц и, следовательно, возникновение новой плоскости облегчаются. Дислокация, которая возникает в некоторой [c.266]

    Прежде чем приступить к более подробному описанию модели работ [51—58], следует указать предположения, с учетом которых она была построена 1) скорость объемной диффузии достаточно [c.268]

    При термическом спекании различных дисперсных систем большую роль играет объемная диффузия [76, 77]. При спекании первичные частицы, которые в первоначальный момент времени касались только в одной точке, через некоторое время будут соприкасаться по основанию сегмента с радиусом А (рис. 25,а). При этом одновременно уменьшается поверхность и удельный объем пор, а также становятся меньше линейные размеры образца — происходит его усадка. При таком механизме спекания в первые моменты поверхность уменьшается в большей степени, чем объем пор. Однако, в дальнейшем картина меняется. При сближении частиц потеря суммарной поверхности постоянно уменьшается. Исходя из этого, средний радиус пор при уменьшении удельной поверхности должен вначале расти, а затем уменьшаться. [c.55]

    При повышении температуры все большую роль играет объемная диффузия. Экспериментальные кривые изменения радиуса пор и их удельного объема все дальше отстоят от кривой, соответствующей поверхностно-диффузионному механизму спекания. В области высоких температур механизм спекания существенно зависит от наличия паров воды, так как при одной и той же температуре изменение парциального давления пара влияет на соотношение между механизмами спекания. Чем выше парциальное давление водяного пара, тем больше роль поверхностно-диффузионного механизма спекания. При прокалке катализаторов в сухом воздухе поверхностная диффузия, по-видимому, полностью не устраняется, хотя она и протекает в значительно меньшей степени, чем в присутствии водяного пара. Суммарный результат спекания при прокалке такой, что средний радиус пор изменяется сравнительно мало. [c.57]


    Влияние температуры на скорость процессов спекания и рекристаллизации. До сих пбр рассматривались процессы, протекающие при постоянной температуре, достаточно высокой для того, чтобы изменения в порошкообразной массе могли быть обнаружены за время опыта. Неоднократно указывалось, что перенос вещества при этом может происходить через газовую фазу путем поверхностной и объемной диффузии. Изменение скорости спекания и рекристаллизации с температурой зависит от вклада этих стадий в суммарный процесс и присущих им величин энергий активации. По данным Мальвина и Хьюза, энергия активации объемной диффузии для данного вещества в среднем составляет около 0,6 от энергии сублимации. Для большинства бинарных соединений она лежит между 80—250 кДж/моль. [c.220]

    При циркуляции катализатор стареет значительно быстрее, чем когда он неподвижен в аппаратах промышленной установки или когда подвергается действию рабочей температуры и среды в лабораторных условиях. Удельная поверхность и структура изменяются в основном за счет объемной диффузии. Наиболее интенсивно старение протекает в начальный период работы катализатора. С утяжелением перерабатываемого сырья спекание катализатора усиливается. [c.93]

    Различие в изменении структуры, как отмечают авторы [125], указывает на разные механизмы этих процессов. При термическом спекании дисперсных тел большую роль играет объемная диффузия. В присутствии водяного пара ускоряется перенос вещества за счет поверхностной диффузии, облегчаемой адсорбцией водяного пара либо за счет испарения вещества геля с водяным паром с поверхности мелких частиц и конденсации его на поверхности более крупных. Наиболее вероятный механизм действия водяного пара состоит в снижении энергетического барьера миграции поверхностных атомов и молекул. Роль объемной диффузии при температуре паровой обработки невелика, так как при 750 °С термическое спекание протекает крайне медленно [126]. [c.54]

    Распределение концентрации с в растворе в любой момент t можно найти путем решения дифференциального уравнения диффузии (второй закон Фика), которое для объемной диффузии имеет вид [c.199]

    Анализ импеданса электрокристаллизации еще более усложняется, если наряду со стадиями замедленного разряда, поверхностной диффузии и встраивания адатома в решетку учесть еще и стадию объемной диффузии ионов к поверхности электрода. Идентификация стадии медленной поверхностной диффузии методом измерения импеданса становится чрезвычайно затруднительной. Более надежные результаты могут быть получены, по-видимому, при измерении зависимости тока от времени в ходе программированного изменения потенциала электрода. [c.326]

    При высоких температурах (900—1200°С) перенос вещества контактирующих частиц осуществляется по механизм у объемной диффузии или вязкого течения. При этом первичные глобулы скелета сближаются и срастаются, что и приводит к примерно пропорциональному сокращению о и 5. Прокаливание же силикагелей или силохромов в паре воды обычно проводят при более низких температурах (700—800°С), поэтому столь интенсивного сближения глобул не происходит. Под воздействием пара воды перенос вещества происходит главным образом по поверхности кремнезема, что ведет к исчезновению глобул малого размера и к увеличению размеров больших глобул в результате 5 сокращается в большей степени, чем V. [c.51]

    Прежде всего поражает быстрота агрессивного действия жидких металлов с момента нанесения ртути до разрыва цинковой проволоки проходит всего несколько минут. Никакие процессы коррозионного типа не смогут за такое короткое время столь сильно понизить прочность образца. Нельзя также предположить, что резкое изменение механических свойств связано с диффузией (проникновением) ртути в кристаллическую решетку цинка скорость объемной диффузии ртути в монокристаллический цинк при комнатной температуре слишком мала. Не может, наконец, сказываться и растворение цинка, так как вес ртути составляет менее 1% веса цинковой проволоки. [c.221]

    Механизм спекания. Для понимания и, следовательно, для возможности сознательного управления ходом спекания важно определить механизм переноса вещества в рассматриваемом случае. К механизмам, указанным ранее, следует добавить еще один — вязкостное течение, происходящее в объеме частиц и представляющее собой кооперативное перемещение атомов под действием разности давлений на выпуклых и вогнутых элементах поверхности скорость перемещения определяется коэффициентом вязкости при данных условиях (р, Т). Объемная диффузия отличается от вязкого течения тем, что перемещение атомов происходит в значительной мере независимо друг от друга и совершается по дефектам структуры. [c.216]


    Механизм переноса Х<г Х>г Объемная диффузия Вязкостное течение [c.216]

    Разрушение интерметаллической фазы нельзя рассматривать как растворение нескольких отдельных кусков металлов, имеющих электрический контакт. Атомы каждого компонента равномерно (по крайней мере, статистически равномерно) распределены по всему объему сплава, поэтому преимущественная ионизация одного из них приводит к образованию в кристаллической решетке поверхностного слоя большого числа вакансий. Если объемная диффузия в сплаве велика, то эти вакансии занимаются атомами того же рода, пришедшими из объема растворга и процесс растворения (или преимущественного растворения) этого компонента будет идти непрерывно. Однако значительную диффузию в интерметаллической фазе можно наблюдать только в жидких или весьма легкоплавких системах. Такое селективное растворение наблюдается на амальгамах различных металлов. [c.212]

    Используя изменение механизмов массопереноса в процессе спекания при изменении температуры, удается до некоторой степени управлять размером зерен и степенью их связности в получаемом продукте. Так, выдержка порошка, не подвергнутого предварительному прессованию, ири сравнительно низкой температуре, где с заметной скоростью действует поверхностная диффузия, но еще не проявляются объемная диффузия и вязкое течение, приводит к преимущественному развитию рекристаллизации с уменьшением числа зерен за счет переноса вещества от малых зерен к крупным ( собирательная рекристаллизация ). Последующее повышение температуры до области, где включаются и объемные механизмы переноса, не приводит к значительному спеканию частиц порошка, так как благодаря укрупнению частиц на первой стадии время, необходимое для перемещения вакансий через объем, сильно возрастает. [c.221]

    Описанные явления могут в определенной области температур наблюдаться и в порошкообразных смесях взаимно растворимых веществ. Поскольку растекание по поверхности осуществляется путем поверхностной диффузии, а энергия активации поверхностной диффузии в 3—4 раза меньше, чем объемной диффузии, то может существовать область температур, в которой растекание при температуре опыта будет идти с наблюдаемой скоростью, тогда как объемная диффузия будет исчезающе слаба и оба вещества будут относиться друг к другу как взаимно нерастворимые. [c.223]

    То, что в этой формуле фигурируют концентрации, а ие активности, и значения объемной диффузии, а не поверхностной, справедливо для широких пор [условие (XII.71)] и низких концентраций электролита. [c.224]

    Важной проблемой является обеспечение оптимальной пористой структуры i aтaлизaтopa. Катализатор высокотемпературной конверсии с тонкопористой структурой и большой удельной поверхностью не является оптимальным. Во-первых, мелкопористая структура не обладает достаточной стабильностью при высоких температурах. Во-вторых, при малых размерах пор имеет место Кнудсеновская диффузия, которая лимитируется размером пор. При относительно низких давлениях (0,1-0,5 МПа) положительный эффект дает создание бидисперсной структуры /ЙО/ катализатора. Радиусы пор должны быть такими, чтобы в них имела место объемная диффузия. При высоких давлениях (выше 2,5 МПа) это условие почти всегда выполняется, а радиус пор выбирается обыч-,но по условиям термостабильности. При 900°С такому условию удовлетворяют поры размером 1000 X /20/. [c.34]

    Изотермическая перегонка наглядно проявляется в переносе вещества от выпуклых поверхностей к вогнутым. Этим явлением обусловлено срастание частиц твердой дисперсной фазы, между которыми возникли непосредственные контакты, в том числе спекание-, при этом механизмы переноса бывают различными это может быть объемная диффузия вещества дисперсной фазы через дисперсионную среду (при заметной растворимости в ней вещества дисперсной фазы) либо через саму дисперсную фазу или поверхностная диффузия по границе раздела. Кинетика процессов спекания во всех этих случаях подробно рассмотрена Я- Е. Гегузиным.  [c.269]

    При высокой температуре, когда величина О определяется в основном Оо и различие энергии активации играет меньшую роль, диффузия по путям повышенной проводимости не вносит существенного вклада в общий диффузионный поток, определяемый в основном объемной диффузией. При достаточно низких температурах диффузия в объеме практически не идет, и весь процессе определяется путями повышенной подвижности. Это проявляется, например, при самодиффузии серебра в том, что на прямой lg О—1/7 (рис. Х1У.12) наблюдается перелом. [c.365]

    Различные группы твердофазных реакций отличаются между собой характером лимитирующего звена. В одной из групп скорость реакции определяется образованием и ростом зародышей, в другой — объемной диффузией реагентов через слой образовавшегося продукта реакции. Протекание ряда реакций определяется скоростью химического превращения на поверхности. Дальше отдельно будут рассмотрены реакции между твердыми металлами и газами. [c.508]

    Объемная диффузия (или самодиффузия) является основным видом переноса вещества внутри пористого адсорбента. Здесь радиус капилляра много больше величины свободного пробега молекул, поэтому столкновения [c.190]

    Для оценки коэффициента самодиффузии молекул в сорбированной фазе также могут быть использованы опытные значения коэффициента внутреннего массопереноса при адсорбции в области малых значений Р1Ру, где исключается влияние капиллярного переноса и объемной диффузии [1, 14, 19]. [c.63]

    Дислокационная теория росаа кристаллов из растворов [59]. Модель предыдущего раздела основана на предположении о том, что полную скорость диффузии определяет поверхностная диффузия модель удовлетворительным образом описывает кинетику роста кристаллов из газовой фазы в случае, когда градиент концентрации в объемной фазе можно считать пренебрежимо малым по сравнению с разностью концентрации в непосредственной близости от кристалла и равновесной концентрации. В случае, когда градиент концентрации в объемной фазе велик, процессом, определяющим полную скорость диффузии, является объемная диффузия. Этот случай, как правило, приходится рассматривать при кристаллизации из растворов (или из газовой фазы в присутствии инертного газа) [60]. [c.272]

    Рассмотренная математическая модель внутридиффузион-ного переноса в гранулах адсорбента предполагает, что массоперенос в твердом теле полностью определяется некоторым постоянным коэффициентом диффузии. Действительно, проникание адсорбата внутрь зерна адсорбента — процесс диффузионный, а под коэффициентом диффузии D понимают количество вещества, диффундирующего в единицу времени через 1 см поверхности при градиенте концентрации, равном единице. Естественно, что нельзя ожидать, чтобы один постоянный коэффициент диффузии описал те явления, которые происходят в процессе переноса адсорбата в таких сложных пористых структурах, которыми обладают гранулы любого промышленного адсорбента. Величина D должна рассматриваться как эффективный коэффициент диффузии, значение которого зависит от структуры пор и вклада в массоперенос различных транспортных механизмов, таких как нормальная или объемная диффузия, молекулярная или кнудсенов-ская диффузия и поверхностная диффузия. Для того чтобы учесть негомогенность структуры адсорбентов, при экспериментальном и теоретическом изучении кинетики адсорбции микропористыми адсорбентами в настоящее время широко используется представление о бипористой структуре таких адсорбентов [18], которое предполагает два предельных механизма массопереноса диффузия в адсорбирующих порах (например, в кристаллах цеолита) и перенос в транспортных порах. [c.50]

    При моно- или полидисперсной структуре катализатора, когда наряду с переносом вещества по механизму Кнудсена протекает и объемная диффузия, значение должно находиться ) эжду значениями 4 граничных же случаях, когда превалирует один из механизмов диффузии, значение соизмеримо со значениями Д или [c.68]

    При конверсии углеводородов в зааисимостя от размеров пор х параметров процесса диффузия может быть объемная и кнудсеновская.Многие катализаторы конверсии состоят из макро- и микропор. В макропо-рах при любых режик1ах работы наблвдается объемная диффузия. В мик-ропорах (радиус 10-100 A) диффузия может быть объемной и кнудсенов-ской. Переход от кнудсеновской к объемной диффузии осуществляется при давлении около 2,5 МПа. При атом давлении средняя длина свободного пробега молекул одного порядка с диаметром пор. [c.66]

    При давлениях, близких к атмосферноцу, преобладающей в процессах конверсш углеводородов является кнудсеновская диффузия- С повышением давления наблщцается постепенный переход к объемной диффузии. Для большинства катализаторов диаметр пор равен среднему пробегу молекул - примерно при 2,5 МПа. Следовательно, можно, считать, что диффузия в микропорах катализатора лежит в переходной области для всех режимов конверсии. [c.68]

    При 300 и 380°С наблщцается кинетический режим, а при более высоких температурах - внутридиффузионный режим. Интересно отметить, что при диффузионном режиме изменение давления не сказывается на доле работающего катализатора. Как видно из рис.13, при температуре 350°С критический радиус равен 0,4 при любых давлениях и Это объясняется тем, что с увеличением давления концентрация реагента возрастает, а эффективный коэффициент диффузии падает примерно в равной степени, так как он определяется в данном случае коэффициентом объемной диффузии. Толщина работающего слоя эерна очень сильно зависит от температуры в области низких температур (до 300°С) и очень слабо в области температур выше 400°С, где толщина работающего слоя менее Ъ% радиуса зерна (рис.14). [c.81]

    Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25°С О = 1,3-10" см с) [17], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцинкованных слоев Б-латуни (сплав 2п—Си с 86 ат. % 2п) и -у-латуни (сплав 2п—Си с 65 ат. % 2п) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным. [c.334]

    В зависимости от того, является ли изменение свойств полимера под воздействием влаги обратимым пли необратимым после удаления влаги из материала, зюздействие воды на полимер определяют как физическое или химическое. Необратимые изменения свойств материала при химическом воздействии соировоя даются изменением химической структуры полимера. Физическое воздействие вызывает обратимые изменения свойств полимера при этом физическое воздействие может быть как поверхностным, так и объемным. Следствием проникновения воды в полимер в процессе объемной диффузии при обратимом воздействин является уменьшение взаимодействия мегкду макромолекулами, связанными друг с другом силами Ван-дер-Ваальса, что, в свою очередь, снижает прочность материала, увеличивает гибкость макромолекулярных цепей, в результате чего снижается температура стеклования и температура хрупкости, создаются условия для ускоренного протекания релаксационных процессов. [c.73]

    Смешение — это операция, приводящая к уменьшению неоднородности системы. Этого можно достичь, только вызвав физическое перемещение ингредиентов. Смешение включает три основные типа движения. Бродки [2] назвал это движение диффузией и классифицировал его типы как молекулярную, турбулентную и объемную диффузию. Молекулярная диффузия — это спонтанно протекающий процесс, вызванный наличием градиента концентрации (химический потенциал). Это доминирующий механизм при смешении газов и пизковязкпх жидкостей. При турбулентном смешении молекулярная диффузия накладывается на беспорядочное вихревое движение, которое в свою очередь может накладываться на объемную диффузию , или конвективное течение. [c.182]

    При реакциях между твердыми веществами наряду с процессами, протекающими на поверхности раздела фаз, и процессами образования зародышей кристаллов при образовании новой фазы большое значение имеют также процессы переноса в кристаллах. Для ускорения относительно медленной объемной диффузии необходим подвод тепловой энергии. Поэтому все реакции между твердыми веществами, как правило, проводятся при повышенных температурах. П(зскольку химическая активность твердых веществ в значительной мере определяется их структурой и величиной поверхности, исходные вещества перед проведением реакции размалывают в тонкий порошок или измельчают каким-либо иным способом, т. е. переводят вещества в состояние с сильно развитой поверхностью. Тем самым осуществляется активация за счет механической энергии (разд. 33.9.2.6). Для проведения реакций между твердыми соединениями чаще всего используют смеси порошков или прессованные таблетки. Для установления равновесия обычно требуется постепенное нагревание до довольна высокой температуры. Для исследования конечных продуктов и кинетических измерений особенно удобны структурно-аналитические и физические методы анализа. При определении механизмов реакции было установлено, что в некоторых твердофазных реакциях перенос компонентов реакции происходит через газовую фазу. [c.437]

    Диффузия при реакциях в твердом состоянии. Диффузионные процессы, протекающие в твердых телах, отличаются большим разнообразием. Различают самодиффузию и гетеродиффузию в зависимости от того, происходит ли в кристаллической решетке перемещение элементов (атомов) этой же решетки или чужеродных атомов либо ионов. В зависимости от направления перемещения элементов различают объемную диффузию, диффузию вдоль граней или дефектов кристаллов (по внутренним поверхностям кристалла) и поверхностную диффузию (по внешней поверхности). Поверхностная диффузия обычно происходит легче, чем объемная диффузия и диффузия вдоль граней кристаллов. [c.161]

    При появлении в гранулах зон микрорасплавов начинает протекать и объемная диффузия. Все эти процессы приводят к упрочнению гранул. Изменение гранулометрического состава происходит в интервале температур от 850 до 1200 С в результате разложения зерен СаСОз и разупрочнения гранул вплоть до разрушения. [c.223]


Смотреть страницы где упоминается термин Объемная диффузия: [c.123]    [c.57]    [c.54]    [c.70]    [c.79]    [c.283]    [c.84]    [c.221]    [c.339]   
Основы адгезии полимеров (1974) -- [ c.126 , c.128 ]




ПОИСК







© 2025 chem21.info Реклама на сайте