Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты упаковки

    Уравнение (74) получено в предположении, что в единице объема N дислокаций распределены равномерно. Современные теории деформационного упрочнения [40] исходят из того факта, что дислокации образуют плоские скопления из п копланарных дислокаций, заторможенных барьерами в плоскостях скольжения, в результате чего увеличивается напряжение течения. Особенно характерно образование плоских скоплений для металлов с малой энергией дефекта упаковки (нержавеющая сталь, а-латунь), где затруднено поперечное скольжение и такие скопления возникают у границ. Взаимодействие дислокаций в скоплении приводит к увеличению энергии каждой из них, пропорциональному числу дислокаций п в скоплении (после отжига вследствие образования границ субзерен из дислокаций происходит, наоборот, значительное снижение энергии) [31]. [c.48]


Рис. 10.1. Зародыши СиаО на поверхности медн при давлении 13,3 Па (0,1 мм рт. ст.), 525 °С, 20 с (X 17 600). Черные линии — скопления дефектов упаковки в решетке медн [4 ] Рис. 10.1. Зародыши СиаО на <a href="/info/164901">поверхности медн</a> при давлении 13,3 Па (0,1 мм рт. ст.), 525 °С, 20 с (X 17 600). <a href="/info/278989">Черные линии</a> — скопления <a href="/info/71801">дефектов упаковки</a> в решетке медн [4 ]
    Микродефектами являются всевозможные элементарные возбуждения (см. гл. II), домены (области спонтанной электризации или намагничения), изотопы, инородные атомы, отдельные атомы (или группы), занимающие нерегулярные положения в решетке (вакансии, внедренные атомы, центры окраски, дефекты упаковки, домены , дислокации и т. д.). [c.69]

    Дефекты упаковки кристалла образуют полосы контраста на светлопольной электронно-микроскопической картине. Полосы симметричны относительно проекции центральной линии дефекта. Полосы на изображении, возникающие от границ зерен, более широкие и постоянные по толщине, чем полосы от упаковки атомов в кристалле. [c.157]

    Двойники в эпитаксиальных слоях кристаллов на снимках имеют вид прямых полос с полосчатым контрастом на краях (близки по виду к дефектам упаковки). [c.157]

Рис. 16. Корреляция времени до разрушения х и энергии дефектов упаковки ЭДУ (с поправочным множителем 2,3) для аустенитных нержавеющих сталей [78] Рис. 16. <a href="/info/207718">Корреляция времени</a> до разрушения х и <a href="/info/71801">энергии дефектов упаковки</a> ЭДУ (с <a href="/info/195756">поправочным множителем</a> 2,3) для <a href="/info/828474">аустенитных нержавеющих</a> сталей [78]
    Уменьшение относительной интенсивности линий при появлении дефектов упаковки зависит от индексов линий и появляется в основном у линий с Поэтому можно [c.238]

    Области применения металлографических методов. Металлографический анализ —один из важнейших методов физико-химического исследования. Основные области его применения 1) определение количества фаз и последовательности их кристаллизации при построении диаграмм состояния 2) контроль качества полученного слитка (наличие двойников, поверхностных включений второй фазы и т. д.) при выращивании монокристаллов 3) определение платности дислокаций, дефектов упаковки и т. п. на монокристаллических материалах. [c.47]


    Метод [36], основанный на использовании МРР, позволил определить форму структурных пор и искажений кристаллических областей. Использование этого метода обусловлено тем, что рассеяние рентгеновского излучения на малых углах происходит на границах областей упорядочения кристаллитов и, соответственно, связанных с ними дефектов упаковки. Последние обусловлены наличием границ кристалл — пора и связана с фактором упорядочения материала при его термообработке. [c.51]

    Все виды искусственного и естественного графита характеризуются наличием различных устойчивых дефектов структуры, отличающих реальную от описанной выще идеализированной структуры и влияющих на многие свойства графитов. Основные типы таких дефектов дефекты упаковки слоев (нарушение последовательности их чередования, так называемое турбостратное состояние), дефекты в связях углеродной решетки (разделение слоев на конечные кристаллиты), краевые и дырочные дефекты, дефекты, вызванные внедрением инородных атомов. [c.8]

    Следует указать, что никель, обладающий высокой энергией дефектов упаковки и поэтому облегченным поперечным скольжением дислокаций при деформации, не образует плоских скоплений дислокаций и поэтому не может считаться подходящим объектом для изучения закономерностей механохимического поведения деформируемого металла в смысле влияния степени деформации на его электрохимические свойства. В то же время, ячеистую субструктуру слабо взаимодействующих дислокаций в никеле можно было бы использовать для изучения адсорбционной и пассивационной способности дислокационных центров , не осложненной их взаимодействием. Однако монотонная зависимость адсорбционных и электрохимических свойств пассивной поверхности от плотности дислокаций (и степени деформации) может искажаться механическими нарушениями пассивирующего слоя в местах выхода линий и полос скольжения, плотность и топография, которых зависят от стадий кривой упрочнения. [c.73]

    Хром. Данные о его влиянии на КР аустенитных коррозионно-стойких сталей противоречивы. По-видимому, это связано с тем, что увеличение содержания хрома приводит, с одной стороны, к улучшению пассивирующих свойств, а следовательно, к повышению стойкости к КР, с другой — к повышению электрохимической активности сталей, а также к снижению энергии дефектов упаковки к плоскостному расположению дислокаций, способствующим более быстрому возникновению и развитию трещин КР. [c.72]

    Обсуждение механизмов влияния никеля и хрома будет проведено ниже, здесь важно отметить одну интересную особенность. Оказывается, что описанное выше поведение никеля и хрома коррелирует с величиной энергии дефектов упаковки (ЭДУ) аустенита. На рис. 12 показана диаграмма, построенная в работе [73] на основе анализа многочисленных данных о зависимости ЭДУ от состава сплава (и дополненная некоторыми более поздними результатами, например, [74]) . Очевидно наличие на диаграмме минимума ЭДУ, соответствующего содержанию —18% Сг. Проведено много исследований влияния легирующих добавок в этой области, позволяющих минимизировать ЭДУ в различных сериях сплавов, ио такие результаты не обладают большой общностью. Важность [c.67]

    Расширение линий на рентгенограммах может оыть вызвано и дефектами упаковки. ЕЗ гл. 4 мы рассмотрели влияние политипии на дифракционную картину. Для политипии характерен дальний порядок в чередовании слоев. Если же такого дальнего порядка нет, то дополнительные линии не появляются, но происходит уширение линий. Чаще всего дефекты упаковки встречаются в веществах, построенных по принципу плотнейшей упаковки. Для гексагональной плотнейшей упаковки характерна последовательность чередования слоев АВ АВ АВ, для кубической - АБС АБС АБС. Дефект упаковки может возникнуть вследствие сдвига очередного слоя плотнейшей упаковки (и следующих за ним), в результате вместо приведенных выше последовательностей мы получаем АВ АС ВС ВС... или АВ СА СА ВСА... (вследствие смещения слоя В он становится слоем С). Такие дефекты упаковки называют деформационными в отличие от дефектов роста, при которых последовательность чередования слоев после нарушения правильного чередования становится обратной АВ АС АС... или АВ СА СБ АСБ (вдоль диагонального направления гексагональной ячейки слой В по отношению к слою А сдвинут на 1/3 трансляции, а слой С - на 2/3 или на - 1/3). Уширение линий происходит вследствие тех же причин, что и появление дополнительнЕзГх линий у политипов. Если оба основных типа плотнейших упаковок описывать в гексагональной установке, то в случае дефектов упа- [c.237]

    Указывалось [100], что эта приближенная корреляция обусловлена, очевидно, другой корреляцией — между стабильностью аустенита и ЭДУ. Последняя в свою очередь связана с участием дефектов упаковки (являющихся посредниками при формировании а -фазы [103]) в образовании е-мартенсита [102]. Следует учесть, однако, что водород не способствует образованию мартенсита [104] и что согласно рассмотренным выше данным чувствительность к КР и водородному охрупчиванию имеет тенденцию к более общей корреляции с планарностью скольжения, а не только с ЭДУ. Важным примером служит поведение азота, который усиливает восприимчивость к растрескиванию, не изменяя величины ЭДУ. Таким образом, образование мартенсита не является ни необходимым, ни достаточным условием для КР или водород- [c.75]


    Среди различных типов протяженных дефектов выделим такие, которые с успехом могут быть исследованы методами порошковой рентгенографии. Некоторые из них (например, дефекты упаковки) уже рассматривались. Наибольший интерес представляют модулированные, или несоразмерные, структуры. Большей частью существование такт фаз связано с их кинетической устойчивостью равновесное, более упорядоченное состояние не достигается из-за очень малой скорости преобразования структуры в той области температур, в которой устойчива фаза с упорядоченной структурой. Модулированные, или несоразмерные, фазы отличаются от соразмерных тем, что сверхструктура (обычно по одно(/1у из направлений) имеет период повторяемости, не кратный трансляционной решетке субструктуры. Фазовые превращения сегнетоэлектрическая фаза - пароэлектрическая фаза, относящиеся к фазовым переходам второго рода, обычно протекают через стадию образования несоразмерной фазы, термодинамически устойчивой в узком интервале температур. Появление несоразмерной сверхструктуры в этом случае объясняется смещениями части атомов из идегшьных позиций параэлектрической фазы, величина которых (в определенных пределах) меняется периодически. В этом случае на рентгенограммах могут появляться, кроме основных линий (пятен), сателлиты, которые не индицируются в предположении соразмерной сверхструктуры или период этой сверхструктуры столь велик, что индицирование не может считаться однозначным. Другой пример образования несоразмерных фаз [c.240]

    Мы полагаем, что наиболее поразительной закономерностью поведения различных систем сплавов является общность эффектов, связанных с характером скольжения. Планарное скольжение может вызываться рядом факторов, включая уменьшение энергии дефектов упаковки, понижение температуры, ближний и дальний порядок, образование кластеров и разрезание выделение дислокациями. Все эти факторы отмечались в разных местах данной главы и в предшествующих обзорах. Хотя корреляция планарного скольжения с КР и водородным охрупчиванием наиболее полно и подробно исследована для аустенитных нержавеющих сталей, она применима и в случае других аустенитных сплавов, алюминиевых сплавов, титановых а- и р-сплавов, а возможно, и в никелевых сплавах. Очевидным исключением служит семейство ферритных и мартенситных сталей, однако в этом случае число работ, в которых исследован характер скольжения, относительно невелико. Ниже обсудим возможность того, что в подобных сплавах тип скольжения не имеет большого значения, но предстоящие исследования этих материалов все же должны включать определение типа скольжения, например, с помощью сравнительно простой методики линии скольжения [201]. Это позволит установить, распространяется ли отмеченная корреляция на о. ц. к. стали. Часто высказываемое мнение о том, что в железе (и, как следствие, в стали) скольжение всегда носит сильно непланарный характер,— ошибочно. Например, понижение температуры делает скольжение в чистом железе заметно более планарным и [c.120]

Рис. 14. Коореляция уменьшения относительного сужения 1]) с энергией дефектов упаковки ЭДУ [39. 72. 74, 83] залитые точки —данные для азотсодержащих сталей, рассматриваемых в тексте Рис. 14. Коореляция уменьшения <a href="/info/403710">относительного сужения</a> 1]) с <a href="/info/71801">энергией дефектов упаковки</a> ЭДУ [39. 72. 74, 83] залитые точки —данные для азотсодержащих сталей, рассматриваемых в тексте
    Планарность скольжения может быть усилена за счет любого фактора, затрудняющего поперечное дислокационное соскальзывание, или удерживающего скольжение в тех плоскостях, где оно зародилось. Это означает, что характер скольжения могуг определять не только связанная с составом величина энергии дефектов упаковки, или же такие микроструктурные факторы, как упорядочение, образование кластеров и выделение когерентных, частиц, роль которых уже была показана выше. Многие другие (хотя, конечно же, не все) металлургические факторы, рассмотренные в данной главе, тоже могут быть отнесены к числу влия ющих на тип скольжения. Следует также отметить, что некоторые случаи, которые могут показаться исключением, в действительности лишь подтверждают общую картину. Например, измельчение зерна может, по крайней мере отчасти, влиять на скольжение материала, так как ири этом большая часть объема образца должна быть деформирована путем многократного соскальзывания при малых деформациях [304], а как мы покажем, малость деформации во многих случаях имеет критическое значение. [c.127]

    Н] [314] и удерживает дислокации от поперечного соскальзывания вокруг малых частиц и от выхода. Что касается пределов, в которых характер скольжения зависит от величины энергии дефектов упаковки (ЭДУ) то на рис. 12 показана область составов нержавеющих сталей, при которых ЭДУ велика п, следовательно, склонность к водородному охрупчиванию должна быть мала. Например, сталь 310 (см. табл. 3) имеет высокую ЭДУ и, как правило, испытывает низкие (или нулевые) потери пластичности при экспозиции в водороде [278]. Однако при повышенном содержании водорода [337] или при испытаниях в условиях низких температур [84, 337], то есть при усилении планарности скольжения, для стали 310 также наблюдается увеличение потерь пластичности. Этот пример еще раз подтверждает, что ЭДУ является лишь одной из переменных, влияющих на планарность скольжения. Однако если рассматривать именно ее влияние, то из рис. 14 п 16 видно, что заметные потери пластичности возникают при уменьшении ЭДУ примерно до 40 мДж/м , как в нержавеющей стали 309 5 [74]. Рассматриваемая корреляция согласуется и с тем, что при низких уровнях ЭДУ в испытаниях на КР наблюдается, в основном, транскристаллитное растрескивание [78]. [c.140]

    Магнитные свойства, как и все свойства тел, могут быть структурно чувствительными и структурно нечувствительными. Структурная чувствительность - зависимость свойств от структуры тела (величина зерна, его ориентировка, наличие двойников и дефектов упаковки, величина и разо-риентировка блоков, наличие дислокаций и точечных дефектов). В наиболее общей форме структурную чувствительность можно определить как зависимость свойства от дефектов решетки. [c.55]

    В пробах графита, очищенных флотацией и хи.м и-ческим способом, пр,исутствует ромбоэдрическая модификация, в то время как после термической очистки образцы полностью состоят из гексагонального графита. Однако после измельчения и в тех,, и в других графитах (появляется ромбоэдрическая модификация. Во,з-,никновение ро,мбоэдр1ической модифи,каци,и в гексагональном графите в результате измельчения следует рассматривать как появление дефекта упаковки. Кол,иче-ственная характеристика этой модификации (а) может служить мерой нарушений в структуре, возникающих три диспергировании. [c.150]

    Мезофазные сферы в момент их возникновения и при последующем росте, по данным световой микроскопии в поляризованном свете, а также дифракционного и рентгеноструктурного анализов, являются оптически одноосными положительными кристаллами гегсагональной системы. Показанные на рис. 2-4, а изгибы слоев приводят к тому, что на краях они перпендикулярны к касательной поверхности сферы. Это, по-видимому, способствует начальной коалесценции. В условиях относительно низкой подвижности мезофазы и случайной взаимной ориентации коалесцирующих сфер образования простой слоистой структуры не происходит. При этом возникают структуры, отличающиеся множеством дефектов упаковки слоев линейных, изгибов, нарушений непрерывности. Исследования профилей рефлексов (002) рентгенограмм мезофазы с учетом эффектов гьбсорбции и поляризации рентгеновских лучей, а также фактора рассеяния атомов углерода показывают, что средние значения межслоевого расстояния 002 равны примерно 0,350 нм [2-89]. Отдельные пачки слоев с разными значениями межслоевого расстояния имеют размеры до 2 нм. При нагревании сферы мезофазы могут расщепляться и приобретать относительно плоскую конфигурацию. То же происходит и при графитации мезофазы. Флуктуация межслоевых расстояний у графитирующейся мезофазы наивысшая. [c.46]

    Многие полиморфные модификации различаются только типом чередования слоев плотнейшей упаковки, например модификации металлов с кубической и гексагональной плотно упакованной структурами, модификации иодида кадмия, сульфида цинка, карборунда и т.д. При заданных давлении и температуре обычно только одна из этих модификаций является термодинамически стабильной, а остальные существуют в ithx условиях вследствие ничтожной скорости превращения н стабильное состояние. В некоторых случаях образуются модификации с очень сложными, многослойными упаковками. Эти модификации назьшаются политип-ными. Склонность к политипии особенно четко выражена у слоистых структур. При политипии существует дальний порядок в чередовании слоев, и этим политипия отличается от дефектов упаковки, когда дальний порядок отсутствует. Некоторые способы синтеза кристаллов (конденсация паров, транспортные реакции) особенно часто сопровождаются образованием политипных форм. Образование дефектов [c.121]

    Помимо расширения линий дефекты упаковки приводят к уменьшению интенсивности линий, подвергаюидихся уширению. Это особенно отчетливо проявляется у линий 100 и 101 в случае гексагональной плотнейшей упаковки и 102 (в кубической ячейке - 002) - в случае кубической плотнейшей упаковки. Дефекты упаковки вызывают не только расширение линий, но и их смещение. Иногда появляется и асимметрия профиля дифракционной линии. Это тоже легьсо понять по аналогии с политипией центр тяжести группы линий, появляющихся на месте одиночной линии при идеальном чередовании слоев, может не совпадать с положением этой линии. Понятно и возникновение асимметрии. Дефекты упаковки могут наблюдаться не только у фаз, построенных по принципу плотнейшей упаковки, но и у других веществ. Помимо специфических условий роста дефекты упаковки появляются, например, при механической обработке металлов. Напили-вание и дробление в ступке приводит к появлению дефектов упаковки. В случае неметаллических объектов появление дефектов упаковки может быть вызвано сухим растиранием. [c.238]

    Большинство дефектов упаковки в пленке зарождается на границе с подложкой. Это доказывают одинаковые размеры замкнутых фигур роста (имейщих в случае ориентации (111) вид равносторонних треугольников), которые увеличиваются с увеличением толщины пленки. Дислокации, присутствующие в подложке, распространяются и в эпитаксиальный слой. Помимо этого, дополнительным источником возникновения дислокаций в пленке являются механические нарушения поверхности. Зародыши кристаллизации часто образуются на механических нарушениях. Однако наиболее важной причиной появления дефектов упаковки в осажденном слое является неполное удаление остаточного окисла с поверхности подложки до начала эпитаксиального роста. Наличие островков окисного слоя вызывает появление ступенек на поверхности подложки, которые и служат исходными участками для образования дефектов. [c.140]

    Толщину эпитаксиальной пленки можно определить методом Дэша, который использует свойства дефектов упаковки в ней. На поверхности (И 1) выращенной пленки наблюдаются характерные фигуры роста [c.143]

    На оставшейся после определения толщины пленки части образца проводят микроструктурные исследования. Предварительно поверхность эпитаксиальной пленки обезжиривают спиртом. При различных увеличениях микроскопа сначала изучают особенности микроструктуры пленки, не прибегая к травлению. При этом возможно наблюдение террасообразной структуры, несовершенств, обусловленных включениями и нерегулярностью роста. Наиболее характерные детали поверхности рекомендуется сфотографировать. Затем поверхность пленки подвергают селективному травлению для выявления дефектов упаковки и дислокаций. Составы травителей и методика травления приведены в работе 12. На эпитаксиальной пленке предлагается определить плотность дефектов упаковки [светлые плоские треугольники при ориентации (111)1 и дислокаций (темные треугольные ямки травления) (см. работу 12). [c.150]

    В случае липидов большой вклад в подвижность дают внутримол. движения углеводородных цепей. Они происходят путем гош-транс-поворспов (см. Конформационный анализ) смежных звеньев углеводородной цепи вокруг связи С—С. Благодаря высокой конформац. подвижности цепей в них постоянно возникают изгибы и изломы, что приводит к нарушению регулярного расположения липидных молекул в бислое и к появлению в нем дефектов упаковки, называемых кинки и джогги . [c.30]

    Форма отчета. Отчет о работе должен содержать 1) описание принципа эпитаксиального осаждения германия методом диспропорционирования субнодида 2) принципиальную схему установки и технологический режим йроцесса 3) данные по определению толщины эпитаксиальной пленки 4) описание характерных особенностей микроструктуры и микрофотографии 5) результаты определения плотности дефектов упаковки и дислокаций в виде таблицы 6) выводы по работе. [c.150]

    После испытания на трение скольжения хромистой стали (157о Сг), легированной Мо, Mo+W и Mn-bNi-f u, в поверхностных слоях происходят превращения у- а и а- , измельчение блоков, увеличение плотности дислокаций и др. Степень и характер изменения структурных превращений по глубине слоя зависят от природы легирования аустенита. Для повышения износостойкости сталей такого типа целесообразно легирование аустенитообразующнми элементами (особенно марганцем, понижающим энергию дефекта упаковки), а также сильными карбидообразующими элементами (W, Мо), измельчающими структуру и препятствующими развитию рекристаллизации в наклепанном аустените [10]. Можно считать установленным, что если в процессе работы не происходит превращения остаточного аустенита в высокопрочный мартенсит, то в условиях абразивного износа он значительно легче срезается и уносится абразивными частицами. [c.24]

    В работах Ю. М. Полукарова с сотр. [82] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавки к электролиту меднения поверхностно активных веществ резко повышают вероятность образования дефектов упаковки, увеличивают искажения кристаллической решетки и плотность дислокаций. Заряд двойного электрического слоя ускоряет процессы возврата в тонких осадках меди (эффект Ребиндера), приводящие к появлению внутренних напряжений растяжения. Влияние электрохимических условий осаждения на состояние кристаллической решетки осадков становится определяющим при достаточно большой толщине осажденного слоя на пластически деформированной монокристал-лической подложке дефектность слоев осадка постепенно уменьшалась при утолщении слоя, а при росте осадка на подложке из граней совершенного монокристалла, наоборот, увеличивалась до значений, соответствующих условиям электролиза. [c.93]

    В таком состоянии отмечается низкая энергия дефектов упаковки 188], что способствует копланарному располодачию дислокаций. [c.106]

    В работах Ю. М. Полукарова с сотр. [90] установлено, что увеличение перенапряжения катода при электроосаждении меди вызывает переход от слоисто-спирального роста осадка к образованию и росту двумерных зародышей с появлением дефектов упаковки двойникового типа добавка к электролиту меднения поверхностно-активных веществ резко повышают вероятность обра- [c.96]

    В таком состоянии отмечается низкая энергия дефектов упаковки [96],1 что способствует , сопланарному расположению дислокаций. / [c.107]

Рис. 12. Приближенные изоэиергетические кривые дефектов упаковки [73, 76] в области диаграммы Ре—N1—Сг для сплавов с большим содержанием железа (построены по литературным данным) цифры у кривых —ЭДУ, мДж/мЧ-----минимум при 18% Сг Рис. 12. Приближенные изоэиергетические кривые <a href="/info/71801">дефектов упаковки</a> [73, 76] в <a href="/info/9942">области диаграммы</a> Ре—N1—Сг для сплавов с <a href="/info/944183">большим содержанием</a> железа (построены по <a href="/info/1567804">литературным данным</a>) цифры у кривых —ЭДУ, мДж/мЧ-----минимум при 18% Сг
    Сплавы Ni—Сг обладают высокой стойкостью к окислению и общей коррозии, особенно при содержании Сг менее 20%. В то же время в присутствии водорода характер разрушения бинарного сплава Ni—20% Сг изменяется от вязкого к межкристаллитному и наблюдается существенная потеря пластичности [109, 259, 260]. Энергия дефектов упаковки (ЭДУ) в этом сплаве значительно меньше чем в Ni [259, 261], что свидетельствует, возможно, о более планарном скольжении. К числу промыщленных сплавов, близких к Ni—20% Сг, относятся Инконель 625 и Инконель 600 (последний имеет более высокую ЭДУ, что объясняется пониженным содержанием Сг и присутствием значительного количества Fe). Оба сплава обладают высокой стойкостью к КР в хлоридных растворах при температурах ниже 375 К [262], но при более высоких температурах растрескивание все же происходит [241, 262— 264]. Сплав Инконель 600, кроме того, сравнительно восприимчив к растрескиванию во фторидных средах [241], а также в политио-новой кислоте (НгЗ Ое, где х=3, 4 или 5) и других сульфид-со-держащих средах [241, 262]. Однако следует отметить, что в одном из обзоров [241] разрушение этого сплава в политионовой кислоте было классифицировано как стимулированная напряжением межкристаллитная коррозия , а не как обычное коррозионное растрескивание. [c.111]

    Ленточные, а также трубчатые Н.к. чаще всего образуются из газовой фазы. В их образовании также могут играть роль разя. нес<яершенства струггуры-дислокация (особенно винтовые), дефекты упаковки, микродвойники и Др. [c.255]


Смотреть страницы где упоминается термин Дефекты упаковки: [c.100]    [c.159]    [c.122]    [c.236]    [c.238]    [c.92]    [c.210]    [c.68]    [c.71]    [c.96]    [c.96]   
Химия твердого тела Теория и приложения Ч.2 (1988) -- [ c.74 , c.275 ]

Графит и его кристаллические соединения (1965) -- [ c.14 , c.16 ]

Кристаллография (1976) -- [ c.308 , c.329 , c.331 ]

Введение в физическую химию кристаллофосфоров (1971) -- [ c.128 ]

Химия несовершенных ионных кристаллов (1975) -- [ c.113 ]




ПОИСК







© 2025 chem21.info Реклама на сайте