Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты энергетические

    Для твердого водорода остаточная энтропия при О К обусловливается существованием двух его модификаций пара- и орто-водорода. В связи с этим твердый водород также можно рассматривать как раствор (орто- и пара-водорода), энтропия которого не падает до нуля при О К- Наличие остаточной энтропии у СО (N0, N20) связано с различной ориентацией молекул СО в кристалле (ОС —СО и СО — СО). Так как атомы С и О близки по своим размерам, то эти два вида ориентации в кристалле должны обладать практически одинаковой энергией. Отсюда статистический вес наинизшего энергетического уровня отдельной молекулы равен 2, а для моля кристалла —2 . Поэтому остаточная энтропия СО должна быть величиной порядка / 1п2 = 5,76 Дж/(моль К). Сравнение значений стандартной энтропии СО, вычисленных на основании калориметрических измерений [193,3 Дж/(моль К)) и спектроскопических данных [197,99 Дж/(моль К)1. подтверждает этот вывод. Для твердых веществ, кристаллические решетки которых имеют какие-либо дефекты, 5(0) Ф 0. Значения остаточной энтропии у отдельных веществ, как правило, — небольшие величины по сравнению с 5°(298). Поэтому, если пренебречь остаточной энтропией (т. е. принять условно 5(0) = 0), то это мало повлияет на точность термодинамических расчетов. Кроме того, если учесть, что при термодинамических расчетах оперируем изменением энтропии при протекании процесса, то эти ошибки в значениях энтропии могут взаимно погашаться. Почти каждый химический элемент представляет собой смесь изотопов. Смешение изотопов, как и образование твердых растворов, ведет к появлению остаточной энтропии. Остаточная энтропия связана с ядерными спинами. Если учесть, что при протекании обычных химических реакций не изменяется изотопный состав системы, а также спины ядер, то остаточными составляющими энтропии при вычислении изменения энтропии Д,5 можно пренебречь. [c.265]


    В связи с этим были сделаны некоторые предполюжения относительно образования подобных систем, а именно, если такие системы образуются при дегидрировании колец, сгруппированных в виде треугольника, то свободные радикалы образуются в тех случаях, когда дублет является низшим энергетическим состоянием. Примером такой структуры является перинафтил, изображенный на рис. 44, а. Практически все первичные асфальтены из нефтей содержат гетероатомы (N), а также образующие комплексы ионы тяжелых металлов (Ni + и V +), на что указывает устойчивость этих веществ к окислению. Если координационные числа гетероатомов и углерода отличаются друг от друга, то в сферическом объеме, равномерно заполненном конденсированными системами колец, создаются пустоты, которые могут быть заполнены ионами металлов. При этом могут возникнуть структуры, подобные порфи-ринам. В случае образования дырки небольших размеров возникает радикал (рис. 44, б). При больших пустотах могут возникнуть бирадикальные состояния даже в отсутствие гетероатомов, за счет структурных дефектов (рис. 44, в). Специальные измерения изменений соотношения ЭПР-сигналов в растворах асфальтенов ( U) показали, что ионы ванадия размещаются как во внутренних дефектах молекулярных слоев, так и частично занимают межслоевое положение. [c.225]

    Поверхность адсорбента (катализатора) может быть неоднородной, на ней могут быть трещины, дефекты кристаллической решетки. Неоднородность структуры поверхности может обусловить энергетическую неоднородность катализатора. Поэтому различают адсорбенты и катализаторы с энергетически однородной и энергетически неоднородной поверхностью. На энергетически неоднородной поверхности переход физически адсорбированной молекулы с одного участка поверхности на другой может быть связан с преодолением некоторого энергетического барьера (локализованная адсорбция). Физическая адсорбция на энергетически однородной поверхности является нелокализованной адсорбцией. [c.638]

    Одним из главных вопросов любой теории гетерогенного катализа является вопрос о модели активного центра на поверхности катализатора. Впервые представление об активном центре было развито Тейлором. По Тейлору, поверхность катализатора не является идеальной, ровной поверхностью. На ней могут быть трещины, ребра, дефекты кристаллической решетки. Энергетические свойства разных участков поверхности могут сильно различаться. Каталитически активными центрами может быть небольшая часть дефектов поверхности. Причиной каталитической активности Тейлор считал ненасыщенность связей в атомах, находящихся в активном центре. По Тейлору, активными центрами являются пики , вершины на поверхности катализатора. [c.655]


    Если предположить, что первый этап, так называемая объемная диффузия, не является определяющим, можно сосредоточить внимание на остальных двух этапах. Если на поверхности уже имеется ступень, процесс роста поверхности хорошо описывается методом, предложенным впервые в [51]. Этот метод, однако, не дает достаточно удовлетворительного ответа на вопрос о природе возникновения первичной ступени на поверхности. Эта трудность была преодолена в 1949 г. Франком, который высказал предположение, что источником ступеней при росте плоскостей кристалла являются дислокации. Дислокация представляет собой оц-ределенный тип дефекта в строении кристаллической решетки. В точке дефекта энергетический барьер значительно меньше, поэтому захват частиц и, следовательно, возникновение новой плоскости облегчаются. Дислокация, которая возникает в некоторой [c.266]

    Атомные ядра включают N нейтронов и Z протонов. Параметры и свойства атомных ядер влияют на протекание химических процессов, так как масса, заряд, энергия связи, устойчивость и ядерный спин ядра в значительной мере определяют свойства атома в целом. Отметим прежде всего, что с помощью масс-спектроскопических методов можно обнаружить разность ме кду массой ядра и массой, найденной простым суммированием масс составляющих его нуклонов, — так называемый дефект массы Ат. Энергетический эквивалент дефекта массы представляет собой энергию связи нуклонов в ядре. Ат = = 1,0078 Z+1,0087 N —т. Для ядра гелия Ат = 0,03 а. е. м., что соответствует 27,9 МэВ. Энергия связи ядра химического элемента приблизительно линейно зависит от массового числа A=--Z- -N. Если построить график зависимости средней энергии связи па один нуклон от массового числа, наблюдается максимум при средних значениях массового числа. Таким образом, ядра со средним массовым числом более устойчивы, чем тяжелые или легкие. Следует отметить, что тяжелые ядра богаче нейтронами, чем легкие. При Z>84 уже не существует стабильных ядер. Различают следующие виды ядер изотопы (равные Z, неравные N), изотоны (неравные Z, равные N), изобары (неравные Z, неравные N, равные А), изомеры (равные Z и N, однако внутренняя энергия неодинакова). Для нечетных А имеется лишь одно стабильное ядро, а для четных — несколько стабильных ядер изобаров (правило изобар Маттауха). [c.34]

    Точечные дефекты присущи равновесным кристаллам и образование их следует из статистической теории этих систем. Процесс образования дефектов энергетически невыгоден, но он приводит к увеличению энтропии вследствие возрастания числа конфигураций системы. Действительно, идеальному кристаллу АХ отвечает единственный способ распределения частиц А и X в решетке. В то же время для кристалла с дефектами имеется множество конфигураций, отличающихся по расположению вакансий или междоузельных атомов. [c.191]

    Наибольшее распространение получили лаборатории для поиска дефектов энергетических кабелей и кабелей связи. Их используют на предприятиях нефтяной и газовой промышленности, крупных металлургических комбинатах, атомных электростанциях, в морских портах, региональных системах энергоснабжения и связи. Эти лаборатории оснащают приборами для поиска трасс подземных коммуникаций и определения мест их повреждения. [c.595]

    Электропроводность полупроводников обычно зависит от наличия в них примесей и дефектов решетки и в определенном температурном интервале быстро увеличивается с ростом температуры. В гл. 3 мы показали, что примеси элементов П1 и V групп в решетке элементов IV группы являются соответственно акцепторами и донорами электронов. В полупроводниковых соединениях соответствующие примеси ведут себя аналогично. Вакансии также относятся к числу дефектов, оказывающих влияние на электропроводность. Энергию, необходимую для отрыва электрона от донора или присоединения электрона к акцептору, называют энергией ионизации примеси или дефекта. Энергетические уровни простых доноров и акцепторов расположены в запрещенной зоне, вблизи зоны проводимости и валентной зоны соответственно (рис. 37), а энергия ионизации определяется как разность энергии между примесным уровнем и соответствующей зоной. Если в кристалле одновременно присутствуют доноры и акцепторы электронов, то электроны с донорных уровней перейдут на акцепторные и не дадут никакого вклада в электропроводность поэтому число примесных носителей тока при одновременном присутствии доноров и акцепторов определится как [О]—[Л]), т. е. как разность концентраций доноров и акцепторов. Если [0]>[Л], полупроводник относится к [c.72]

    V1I.3. ЗАРЯЖЕННЫЕ АТОМНЫЕ ДЕФЕКТЫ ЭНЕРГЕТИЧЕСКИЕ УРОВНИ [c.154]

    При образовании пары между однократно заряженными положительным и отрицательным дефектами энергетические уровни этих дефектов смещаются в противоположные стороны. Уровень положительного компонента пары повышается, так как близость отрицательного заряда другого компонента [c.228]


    Дефект массы играет большую роль при расчетах ядерных реакций, где он является основой составления энергетического баланса процесса. [c.5]

    Квантовохимический подход к прогнозированию гетерогенных катализаторов опирается на методы расчета электронной структуры молекул и твердых тел [7—11]. Наиболее фундаментальными свойствами твердых тел, определяющими характер хемосорбции и катализа на них, являются параметры их энергетической зонной структуры, такие, как энергия уровня Ферми, плотность состояний на границе Ферми, ширина энергетических зон и т. п. Реальная структура катализатора проявляется в деформации энергетических зон вблизи поверхности, наличие дислокационных дефектов, неупорядоченности структуры, а также в изменениях, порождаемых взаимодействием катализатора с субстратом. Все это необходимо принимать во внимание при прогнозировании катализаторов. [c.60]

    Последнее существенно заметно при тонком измельчении, когда в одной машине достигается высокая степень измельчения, доходящая до 100 и выше. При крупном, среднем и мелком измельчении материалов средней прочности, когда степень измельчения составляет 3—4, расход энергии колеблется от 0,4 до 1 кВт-ч/т при тонком помоле расход энергии достигает 30 кВт-ч/т, а иногда и больше. Часто высокий удельный расход энергии при тонком измельчении объясняют только изменением прочности или размалываемости материала. Чем мельче частицы, тем меньше в материале внутренних дефектов, тем они прочнее и, следовательно, на их измельчение требуются большие затраты энергии. Это объяснение справедливое, но неисчерпывающее и в некотором смысле консервативное, так как оно не только обосновывает неизбежность высоких энергетических затрат при тонком измельчении, но и разоружает исследователя, ищущего пути к снижению этих затрат. [c.34]

    Особенность гетерогенного катализа состоит в том, что катализаторы (обычно твердые вещества) находятся в ином фазовом состоянии, чем реагенты и продукты реакции. Реакция развивается на поверхности твердого тела, которая всегда имеет много дефектов, в том числе свободные электронные пары, не участвующие в образовании связи. Молекулы реагентов легко взаимодействуют с этими электронами и благодаря образующимся связям удерживаются на поверхности катализатора. В результате некоторые связи внутри адсорбированных молекул настолько ослабевают, что молекулы либо разрушаются, либо превращаются в активные радикалы. Каталитическая активность твердого вещества тем выше, чем лучше реагенты адсорбируются на его поверхности и чем слабее продукты реакции удерживаются ею. При этом важно, чтобы, изменяя энергетическое состояние молекул реагента, катализатор сам не образовывал с ними прочных химических связей. [c.59]

    Существует критическое минимальное значение напряжения, ниже которого растрескивание не происходит. Значение критического напряжения снижается с увеличением концентрации водорода. На рис. 7.12 представлены такие зависимости для стали 5АЕ 4340 (0,4 % С), насыщенной водородом при катодной поляризации в серной кислоте, затем кадмированной для удержания водорода и подвергнутой действию статической нагрузки. Концентрацию водорода систематически снижали отжигом. Задержка перед появлением трещин связана, по-видимому, с тем, что для диффузии водорода к специфическим участкам вблизи ядра трещины и для достижения достаточной для разрушения концентрации требуется время. Эти специфические участки окружены дефектами, возникающими в результате пластической деформации металла. Атомы водорода из кристаллической решетки, диффундируя к дефектам, переходят в более низкое энергетическое состояние. Тре- [c.150]

    Активность катализаторов и длительность их активного состояния зависят от степени пересыщения и от стабилизации первичных активных пересыщенных форм (С. 3. Рогинский), что находится в зависимости от метода приготовления катализаторов. Отсюда и возникла теория генезиса катализатора, высказанная С. 3. Рогинским. Твердые вещества с сильно развитой поверхностью обладают ярко выраженной способно тью к захвату различных примесей на глубину, значительно превышающую толщину внешнего одноатомного слоя причем такие примеси, внедренные в кристаллическую решетку, являются причиной дефектов или образования твердых растворов, т. е. пересыщенных систем. В процессе приготовления катализатора возможно накопление пересыщений. Практически можно установить, как надо изменять параметры температуру, концентрацию, метод осаждения, осадитель, условия восстановления и т. д., чтобы получить наиболее активный, т. е. наиболее энергетически пересыщенный контакт. [c.115]

    Реальные твердые тела неоднородны. Даже в однофазных материалах содержатся дефекты, пустоты, включения, трещины и другие неоднородности, которые могут искажать однородное поле напряжений. В механике сплошных сред анализируются (особенности) поля деформаций — напряжений вблизи дефектов или трещин и путем составления баланса энергий выводятся их критерии стабильности. Это подход механики разрушения. Гриффитс [35] был первым, кто связал энергетические изменения с расширением трещины (длиной 2а). Он приравнял энергию образования новой поверхности ус с1А, необходимую для увеличения площади трещины на бесконечно малую величину [c.71]

    Существуют также ионные кристаллы, у которых электронная разупорядоченность не сопряжена с ионной. Типичный представитель таких кристаллов — СиО, дающий кристаллы стехиометрического состава без заметного избытка металла или кислорода. Электронная разупорядоченность СиО обусловлена тем, что электрон из электронной оболочки двухвалентного иона меди, находящегося в узле решетки, покидает свое место и двигается в решетке как свободный электрон. В месте отрыва электрона остается положительная дырка, т. е. соблюдается равенство концентраций электронов проводимости и дырок. Но в противоположность ионным дефектам, представляющим собой локализованные нарушения, электронные дефекты обладают энергетическими уровнями, размазанными по всему кристаллу. [c.173]

    Приложение внешнего воздействия к нефтяной дисперсной системе заставляет элементарные группировки, в частном случае соприкасающиеся, деформироваться либо изменять ориентацию в пространстве, что приводит к образованию дефектов системы, которые мгновенно занимают наиболее вакантные другие элементы нефтяной дисперсной системы, приводя, таким образом, к общему изменению энергетического равновесия в системе. В этих случаях важная роль отводится вращательным (спиновым) степеням свободы молекул. При этом изменение ориентации группировки происходит за счет поворота каждой молекулы вокруг своей собственной оси, приводящего к перемещению ее центра тяжести, однако не нарушающего взаимный контакт соседних молекул. [c.56]

    Отсюда можно сделать вывод, что достаточно длительное облучение твердого вещества, так же как его нагревание, приводит его энергетический уровень в соответствие с уровнем энергии излучения. При этом, несмотря на общее увеличение концентрации дефектов, прежние дефекты нерадиационного происхождения могут попутно с перемещением атомов и образованием вакансий исчезать или превращаться в другие дефекты. [c.143]

    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    В результате перехода электронов в зону проводимости в валентной зоне образуются положительные дырки ( дефекты электронов ), которые также могут изменять энергетический уровень и обеспечивать перенос электрического заряда. [c.142]

    Представление о существовании на поверхности металла очень широкого спектра энергетически различных адсорбционных центров требует физического обоснования, хотя небольшое число разных типов адсорбционных центров на твердой поверхности имеется всегда (например, ребра, грани, дефекты решетки). Эти центры обусловливают так называемую биографическую неоднородность поверхности. Иногда этих центров может оказаться достаточным для объяснения наблюдаемой экспериментально логарифмической изотермы адсорбции. Действительно, как было показано при помощи расчетов на ЭВМ, суммирование всего пяти изотерм Лэнгмюра с различными параметрами приводит к изотерме, мало отличающейся от логарифмической. Одновременно были предприняты попытки объяснить экспериментально наблюдаемую логарифмическую изотерму адсорбции на основе модели поверхностного электронного газа. [c.77]

    Явление понижения твердости давно использовалось в практике, например при растирании в ступке твердых веществ (серы, оксида железа, сульфидов металлов) в присутствии некоторых индифферентных соединений сахара, мочевины и т. п. Работами Ребиндера был раскрыт механизм этого явления, заключающийся в том, что добавляемые вещества адсорбируются в местах дефектов кристаллической решетки твердых тел, например в микротрещинах. Адсорбция веществ-добавок, с одной стороны, вызывает снижение поверхностной энергии, чем облегчается диспергирование, а с другой стороны, приводит к возникновению сил взаимного электростатического отталкивания адсорбционных слоев, расположенных на противоположных стенках микротрещин. В итоге возникает расклинивающий эффект, усиливающий разрушающее воздействие (рис. 26.1). В результате такого эффекта значительно снижаются внешние энергетические затраты на процесс измельчения. Положительная роль добавок состоит и в том, что их адсорбционные слои препятствуют слипанию вновь образовавшихся частиц. [c.415]

    Другим типом дефектов, чьи транспортные свойства должны быть аналогичны свойствам дефектов типа II) и 1Ь, являются ассоциаты УО и УЬ, у которых места междоузельных молекул воды занимают вакансии (рис. ХУ1П.13 д, е). Для этих дефектов энергетический баланс более благоприятен. [c.546]

    Запомните формы и причины гипоэнергетических состояний (см. Николаев А. Я. Биологическая химия. — С. 230-231, табл. 32). Кроме причин гипоэнергетических состояний, приведенных в табл. 32, существуют и наследственные заболевания, при которых снижен синтез АТР. Однако особи со значительным дефектом энергетического обмена не выживают. Обратите внимание, что ферменты ЦПЭ и ОПК кодируются в ДНК, локализующейся в митохондриях. Известны заболевания, причинами которьгх являются нарушения структуры комплексов 1,111, IV и АТР-синтазы. [c.130]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    НОЙ формы и др.). Таким образом, сопротивление деформированию носит устойчивый или неустойчивый характер. Устойчивое сопротивление деформированию обычно сопровождается с ростом внешней нагрузки (например, при нагружении монотонно возрастающей силой). Переход из устойчивого в неустойчивое состояние сопровождается снижением интенсивности роста или спадом внешней нагрузки и называется предельным состоянием, а параметры, соответствующие ему, - критическими (критическая сила, деформация, напряжение, энергия). Формы потери устойчивости сопротивления деформации разнообразны, например, переход металла из упругого в пластическое состояние, локализация деформаций (шейко-образование) при растяжении, потеря устойчивости первоначальной формы при действии напряжений сжатия и др. Разрушение нередко происходит при нормальных условиях эксплуатации конструкций, когда в целом металл испытывает макроупругие деформации. Такие разрушения, как правило, реализуются при наличии дефектов и конструктивных концентраторов. Последние вызывают локальные перенапряжения и образование микротрещин. Трещины в металле могут существовать и до эксплуатации конструкции, например, холодные и горячие трещины в сварном соединении. При рабочих нагрузках, вследствие действия временных факторов разрушения, происходит медленный, устойчивый рост исходных трещин и при определенных условиях наступает период неустойчивого (быстрого) распространения и окончательного разрушения. Определение критических параметров неустойчивости росту трещин является основной задачей механики разрушения. Критерии механики разрушения, как и феноменологические теории прочности, постулируются на основании какого-либо силового, деформационного или энергетического параметра К (рис.2.7). Условием неустойчивости тела с трещиной является КЖкр (быстрое распространение трещины). [c.76]

    Наличие зонной энергетической структуры электронов решетки окисла может существенно изменить механизм взаимодействия последнего с органической молекулой. Наличие низкорасположенных основных или примесных уровней и ловушек электронов в виде дефектов и дырок приводит, как известно, к большей вероятности затягивания электронов в решетку, что особенно легко протекает для я-элек-тронов [22]. В этом случае первым актом катализа будет разрыв С = С связи, и каталитический процесс, как показано Ройтером [23 ] для окисления нафталина на УаОа, полностью протекает в сорбционном слое, не затрагивая решетку. [c.156]

    Теория Косселя и Странского [35—43]. В этой теории рассматривается идеальный кристалл (без дефектов решетки). Для простоты изложения в качестве примера можно выбрать кристалл типа ЫаС1 с кубической решеткой. Кристалл растет непрерывно посредством одного и того же повторяюшегося процесса. Частицы встраиваются в решетку, располагаясь одна за другой и образуя ряды и плоскости. То, в какое место вероятнее всего попадет частица, зависит от энергетических условий на поверхности кристалла. Частицы прежде всего размещаются в тех места.х, где это наиболее выгодно энергетически, т. е. там, где выполняется условие (3.62). Различные возможные положения частиц [/—4] иллюстрируются рис. 3.6. [c.264]

    Квантовомеханическое исследование процесса взаимодействия молекулы гзза с поверхностью кристалла показывает, что в зависимости от вида молекулы и кристаллической решетки такое взаимодействие может быть различным как по характеру образующейся связи и прочности ее, так и по изменению свойств молекулы в адсорбированном состоянии. В образовании связи могут принимать участие электроны или дырки кристаллической решетки ( 55). Связь может образоваться не только за счет имевшихся свободных валентностей поверхностных атомов, но и за счет валентностей, возникаюш,их при взаимодействии поверхностных атомов с молекулой газа. В хемосорбированном состоянии молекула может вновь оказаться в валентно насыщенном состоянии или перейти в состояние радикала или в ионо-радикальную форму. Во многих случаях за время пребывания молекулы в хемосорбированном состоянии может изменяться характер связи ее с поверхностью кристалла, состояние ее и энергия связи. Для полупроводниковых адсорбентов введение донорных или акцепторных примесей, вызывая изменение в соотношении энергетических уровней электронов в кристалле, может влиять ыа характер хемосорбционных процессов. Подобное же влияние могут оказывать и различные структурные дефекты поверхности. [c.371]

    В основе мультиплетной теории лежат два принципа геометрического соответствия и энергетического соответствия. Сущность геометрического соответствия заключается в том, что структурное (геометрическое) расположение силовых центров на поверхности катализатора должно отвечать расположению атомов в молекуле. На поверхности катализатора расположение силовых центров подобно матрице. К данной матрице может подойти и взаимодействовать молекула определенного геометрического строения. Силовым центром могут быть дефект решетки, атом, недостроенная грань и т. п. Актив- [c.655]

    Металлов в некоторой мере может ассимилировать, йй-пример, я-электроны и создавать тем самым специфическую адсорбцию дополнительно к электростатической. Поверхность металлов и особенно сталей неоднородна как по химическому составу, так и по наличию на ней различных дефектов, свойственных поликристаллическим материалам, границ зерен, вакансий, дислокаций и др. Эта неоднородность создает энергетическую дифферен-цированность поверхности и в результате различные по адсорбционной активности участки. Поэтому на одних ее частях могут прочно блокироваться хемосорбирован-ные частицы ингибитора, на других он удерживается силами физической адсорбции, а третьи могут оставаться свободными от ингибитора. [c.92]

    Будилов И.H., Гафаров Р.Х. Оценка текущего состояния, прочности и остаточного ресурса нефтехимического оборудования с учётом локальных дефектов // Материалы Второго научно-технического семинара Обеспечение промышленной безопасности производственных объектов топливно-энергетического комплекса Республики Башкортостан , Уфа.- 1999.-С.79-86, [c.97]

    Сяо и Кауш [59—61] изучили влияние локальной деформации, чувствительной к ориентации цепей, на суммарную скорость их разрыва. Хольцмюллер [62], Бартенев и др. [63], а также Салганик [64] проанализировали количество тепловой энергии и направленность ее передачи от одного сегмента к другому посредством статистических фононных флуктуаций. Различные статистические аспекты накопления молекулярных дефектов исследованы Орловым и др. [65], Гойхманом [66], а также Готлибом [67], которые учли образование изолированных дефектов, их рост, взаимодействие и объединение. Энергетическая вероятностная теория была выдвинута Валани-сом [68], который объединил стохастическую природу разрушения, понятие плотности энергии деформации и гипотезу Журкова. [c.76]

    Исследованы при комнатной температуре и температуре жидкого азота эффект Холла и электросопротивление пироуглерода с температурой осаждения 2100°С, содержащего различное количество бора. Полученные данные обработаны с использованием электронно-энергетической модели Херинга—Уоллеса в предположении применимости кинетического уравнения Больцмана. Сделан вывод о существовании двух основных механизмов рассеяния носителей заряда в исследованных материалах — на ионизированных атомах бора и на собственных дефектах структуры. Оценены соответствующие им длины свободного пробега. Предложена формула, описывающая зависимость электросопротивления пироуглерода от содержания в нем растворенного в решетке бора. Ил. 1. Табл. 2. Список лит. 3 назв. [c.267]

    Другая отличительная особенность процессов адсорбции на металлах группы платины по сравнению с ртутным электродом связана уже не с механизмом адсорбции, а с характером распределения адсорбированных частиц по энергиям связи. Если на ртути идеально соблюдается энергетическая равноценность адсорбционных мест, то в случае твердых электродов нельзя не принимать во внимание большую вероятность нарушения такой однородности. Прежде всего могут отличаться по энергиям адсорбции различные грани. Значения энергий адсорбции на межкристал-литных границах, в узких шелях, микропорах, в местах включений посторонних частиц в поверхностный слой могут быть сун1е-ствеино иными по сравнению со значениями энергий адсорбции на чистых гранях. Особыми местами являются также вершины и ребра кристаллитов, выходы дислокаций и другие дефекты поверхности. Следует учитывать, что часто могут иметь место не [c.87]


Смотреть страницы где упоминается термин Дефекты энергетические: [c.152]    [c.161]    [c.9]    [c.323]    [c.85]   
Очерки кристаллохимии (1974) -- [ c.264 ]




ПОИСК







© 2025 chem21.info Реклама на сайте