Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрокристаллизация

    НО из-за ряда различных причин не реализуются. Часть из этих причин была учтена в кристаллохимической теории электрокристаллизации К. М. Горбуновой и П. Д. Данкова, которую можно рассматривать как развитие взглядов Фольмера. [c.338]

    Если металл опущен в раствор, содержащий ионы этого же металла, то, как известно, на поверхности металла — электрода устанавливается электрохимическое равновесие и появляется соответствующий электродный потенциал. При включении тока это равновесие нарушается и, в зависимости от направления тока, возникает тот или другой электродный процесс, стремящийся восстановить равновесие. При катодной поляризации, т. е. когда к электроду подводятся электроны, наблюдается процесс электрокристаллизации, т. е. перехода ионов металла из раствора в кристаллическую решетку при анодной поляризации, когда электроны отводятся от электрода, происходит электро- [c.634]


    Вопрос о механизме электрокристаллизации металлов изучался многими электрохимиками, работы которых оказали большое влияние на развитие теории и технологии электроосаждения металлов. [c.334]

    Ад-атомы в процессе электрокристаллизации участвуют или в образовании кристаллических зародышей, или в их росте. При этом атомы должны принять ориентированное положение в кристаллической решетке. Торможение в этой стадии электродного процесса сопровождается возникновением перенапряжения. Общее перенапряжение кристаллизации складывается из величин перенапряжения, отвечающих образованию двухмерных (ti ) и трехмерных (т) ) зародышей и присоединению ад-атомов к кристаллической решетке (т]з). Преобладание той или иной составляющей определяется природой осаждае- [c.509]

    Влияние условий электрокристаллизации меди и серебра на распределение кристаллов по размерам по поверхности стеклоуглерода [c.45]

    Для получения тонких беспористых защитно-декоративных электролитических покрытий важно знать распределение кристаллов (зародыщей) по размерам на начальных стадиях массовой электрокристаллизации металлов. Исследование процессов электрокристаллизации различных металлов чаще всего проводится на механически полированном до зеркала стеклоуглероде, так как влияние структуры последнего нивелировано на данные процессы. [c.45]

    Механизм процесса электрокристаллизации [c.334]

    Согласно современным представлениям, процесс электрокристаллизации можно разделить на следующие основные стадии  [c.334]

    Вместе с тем известны случаи — при изучении роста монокристаллов серебра [4], — когда процесс электрокристаллизации протекает без заметного перенапряжения и образования новых зародышей. Такие условия реализуются, если на поверхности растущего кристалла имеются участки (дислокации) с иным расположением структурных элементов по сравнению с идеальной решеткой данного кристалла. При этом кристаллическая решетка будет строиться за счет спирально передвигающегося роста грани кристалла, а также путем распределения адсорбированных атомов на атомарно-шероховатой поверхности. Таким образом, на активной поверхности кристалла всегда имеется значительное число участков, способных к росту, и, следовательно, для такой поверхности кристалла не всегда требуется значительное пересыщение, необходимое для образования новых зародышей. [c.337]

    Специфика электролиза индивидуальной расплавленной соли при применении жидкого катода из расплавленного металла заключается в том, что концентрационная поляризация вследствие высокой подвижности ионов практически отсутствует, отсутствуют также затруднения, связанные с электрокристаллизацией. Электрохимическое перенапряжение очень мало, так как токи обмена в расплавах для всех металлов велики 0,5—3,3 А/см (в водных растворах io = 10 — 10 A/ м ). Поэтому отклонение потенциала от равновесного значения обычно мало (от 2 до 30 мВ). [c.470]


    Получение металлов электролизом расплавленных солей может быть осуществлено при температурах электролиза выше температуры плавления катодного металла или ниже ее. Легкие металлы на практике получают при температурах выше температуры плавления. В случае проведения электролиза при температурах, ниже температуры плавления металла, на катоде образуется твердый кристаллический осадок. Существенно, что при электролизе расплавленных солей электрокристаллизация протекает без тех затруднений, которые обычны в водных растворах. Поэтому металл кристаллизуется в условиях, более близких к равновесным, чем при кристаллизации из водных растворов. Это приводит к образованию хорошо формирующихся кристаллов и дендритов. При определенных условиях (высокая чистота электролита, пониженные температуры, низкие плотности тока и др.) удается получать металлы и в виде плотных осадков. [c.475]

    Коллоидные частицы органического характера не могут не сказаться на условиях электрокристаллизации никеля. Присутствие в растворе органических веществ, выщелачиваемых из дерева, существенно влияет на качество осадка, на его эластичность, содержание в нем углерода и на выход по току (табл. 78). [c.341]

    Для бездислокационных граней между стационарной скоростью распространения ступени роста и перенапряжением при небольших т] существует линейная зависимость [=kL , где Ь — длина растущей ступени. Для кристаллов с винтовой дислокацией была найдена линейная зависимость между током и г) , которая объясняется тем, что при спиральном росте общая длина L спирального фронта обратно пропорциональна расстоянию между последовательными витками спирали и, следовательно, пропорциональна перенапряжению. Зная эти зависимости, можно приготовить поверхности с точно известной плотностью ступеней роста. Согласно импедансным измерениям на таких поверхностях плотность тока обмена пропорциональна длине ступеней. Это означает, что осаждение адатомов на ступенях является более быстрым процессом, чем осаждение на кристаллической плоскости, а найденная плотность тока обмена, составляющая 600 А/см , характеризует обмен между адатомами в местах роста и ионами в растворе. С другой стороны, импедансные измерения на идеально гладких поверхностях позволили определить ток обмена адатомов на кристаллической плоскости с ионами раствора, который оказался равным всего 0,06 А/см . Таким образом, при электрокристаллизации серебра из концентрированных растворов осуществляется преимущественно механизм непосредственного вхождения адатомов в места роста, вклад же поверхностной диффузии даже при наивысшей плотности ступеней не превышает нескольких процентов. [c.327]

    При построении количественной теории образования трехмерных и двумерных зародышей в процессе электрокристаллизации металлов исходят из представлений о механизме возникновения новой фазы из пересыщенных раствора или пара, согласно которым работа образова- [c.313]

    Если поверхность электрода не идеальна, то электрокристаллизация может происходить и без образования двумерных зародышей. Рассмотрим, например, некоторые особенности электрокристаллизации в присутствии винтовых дислокаций, которые часто встречаются в реальных кристаллах. Представим, что кристалл разрезан наполовину, а затем обе половины сдвинуты параллельно разрезу на размер диаметра атома (рис. 172). [c.318]

    Существует несколько схем последовательных стадий в процессах анодной электрокристаллизации. Так, согласно Дж. Бокрису, анодная электрокристаллизация протекает через образование промежуточного растворимого комплекса, из которого в растворе вблизи электрода возникает твердый осадок, выпадающий затем на поберхность металла. Например, при [c.321]

    По X. Тереку и М. Флейшману, образование центров кристаллизации из промежуточного соединения (не обязательно растворимого) происходит непосредственно на поверхности электрода. Эти исследователи рассматривали зависимости силы тока / от времени с момента наложения на электрод импульса перенапряжения, достаточного для образования зародышей. Ток пропорционален поверхности зародышей, на которой происходит электрокристаллизация. Величина поверхности меняется во времени, поскольку зародыши, возникшие как дискретные центры, далее разрастаются и могут взаимодействовать друг с другом. Во времени может изменяться также число зародышей по закону [c.321]

    МЕТАЛЛОВ. ИМПЕДАНС ЭЛЕКТРОКРИСТАЛЛИЗАЦИИ [c.322]

    Окончательное выражение для адмиттанса (обратной величины импеданса) электрокристаллизации 1/2 р=//т) имеет следующий вид  [c.326]

    При к Хо, а также при высоких м импеданс электрокристаллизации сводится к омическому сопротивлению стадии разряда 9= T/rtf о. При [c.326]

    Однако на опыте доказательство замедленной поверхностной диффузии при помощи импедансных измерений осложняется необходимостью учета медленного встраивания адатома в место роста. При встраивании адатом окончательно теряет свою сольватную оболочку, что связано с затратой энергии. Эту стадию электрокристаллизации можно рассматривать как гетерогенную последующую химическую реакцию. Обратный процесс — выход адатомов из мест роста и последующая их ионизация — характеризуется некоторой предельной анодной плотностью тока. Импеданс стадии медленного вхождения адатома в места роста моделируется параллельным соединением емкости и сопротивления электрокристаллизации, для которых сохраняются те же самые выражения, что и для медленной гетерогенной химической реакции (см. 59). [c.326]


    Анализ импеданса электрокристаллизации еще более усложняется, если наряду со стадиями замедленного разряда, поверхностной диффузии и встраивания адатома в решетку учесть еще и стадию объемной диффузии ионов к поверхности электрода. Идентификация стадии медленной поверхностной диффузии методом измерения импеданса становится чрезвычайно затруднительной. Более надежные результаты могут быть получены, по-видимому, при измерении зависимости тока от времени в ходе программированного изменения потенциала электрода. [c.326]

    На опыте стадии образования новой фазы, поверхностной диффузии адатомов и встраивания их в кристаллическую решетку не всегда оказываются наиболее медленными в процессе электрокристаллизации. Так, часто замедленной оказывается стадия разряда ионов раствора. При электрокристаллизации из комплексных электролитов медленными могут оказаться реакции диссоциации комплексных ионов, Пере- [c.327]

    В книге рассмотрены свойства и методы изучения заряженных межфазных границ. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к поверхности электрода. Показана роль явлений массопереноса при конструировании хемотронных приборов и новых источников тока. Обсуждены закономерности перехода заряженных частиц через границу электрод/раствор. Излагаются физические основы современной квантовомеханической теории элементарного акта электрохимической реакции, особенности химических стадий в электродном процессе, механизм электрокристаллизации, многостадийные и параллельные процессы, роль явлений пассивности и адсорбции органических веществ в электрохимической кинетике, [c.2]

    При построении количественной теории образования трехмерных и двумерных зародышей в процессе электрокристаллизации металлов М. Фольмер и Т. Эрдей-Груз исходили из представлений о механизме возникновения новой фазы из пересыщенных раствора или пара, согласно которым работа образования зародыша новой фазы тем меньше, чем меньше его размеры. Однако с уменьшением размеров зародыша возрастает химический потенциал слагающего его компонента, поскольку при малых размерах зародыша относительно велико число поверхностных атомов, обладающих повышенной энергией. При образовании новой фазы в равновесных условиях химические потенциалы каждого компонента в обеих фазах должны быть равны. Для выполнения этого условия необходимо повысить химический потенциал компонента в материнской фазе, что достигается при пересыщении раствора или пара по данному компоненту. Пересыщение — главная особенность процесса образования новой фазы. Степень пересыщения и размеры элемента новой фазы, который при этом может возникнуть и служит зародышем для роста больших кристаллов или капель, оказываются взаимосвязанными. Так, при образовании капель жидкости из пересыщенного пара радиус г капли определяется соотношением Томпсона  [c.328]

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]

    Часто оба эти процесса (процесс электрокристаллизации и процесс анодного растворения металла) протекают достаточно быстро и не сопровождаются заметными перенапряжениями. Например, если опустить две медные пластинки в раствор медного купороса и включить электрический ток, то уже при малом напряжении происходит элeктp0литичe к0li растворение анода и осаждение меди на катоде. Как известно, на этом основано электрорафинирование (очистка меди электро-лизом). [c.635]

    Частный случай фазового перенапряжения — перенапряжение кристаллизации — отвечает процессу электрокристаллизацйи при катодном осаждении металлов. Образовавшиеся при разряде катионов атомы металла первоначально находятся в адсорбированном состоянии на поверхности катода (они называются ад-атомами). Перенапряжение кристаллизации вызывается торможением в стадии вхождения ад-атома в кристаллическую решетку. Согласно Фольмеру, процесс электрокристаллизации идёт в две стадии возникновение центров кристаллизации (кристаллических зародышей) и их рост. Центр кристаллизации — уплотнение атомов, вокруг которого начинается рост кристалла. Различают двухмерные (толщиной в один атом) и трехмерные (толщиной более одного атома) зародыши. [c.509]

    В последние годы нашел широкое применение в электрохимии метод сканирующей туннельной микроскопии (СТМ), как мощный инструмент для исследования топографии ц морфологии поверхности электродов и электролитических осадков от субмикронного уровня до атомного разрещения. Указанный метод позволяет также изучать формирование адатомных слоев и кристаллитов на поверхности подложки на начальных стадиях электрокристаллизации металлов. [c.44]

    Основными объектами исследования выбраны процессы зародыщеобразования меди и серебра на стеклоуглероде, являющиеся классическими моделями начальных стадий электрокристаллизации. Нанесение зародышей металла на предварительно стандартизированную зеркальную поверхность стеклоуглерода осуществляли двухимпульсным потенциостатическим или гальваностатическим методами. [c.45]

    Подробный анализ явлений, сопровождающих рост граней кристалла., был сделан К. М. Горбунопой и П. Д. Данковым [3] при изложении разработанной ими кристаллохимической теории электрокристаллизации. [c.336]

    Рост кристаллической шероховатости обусловлен поликри-сталлической природой электролитических осадков и зависит от размера и формы зерен осадка. В свою очередь неравномерное микрораспределение скорости электроосаждения по катодной поверхности обусловлено структурной неоднородностью последней. Эффекты истинного положительного и отрицательного выравнивания соответственно тормозят и ускоряют рост кристаллической шероховатости. В тех случаях, когда создаются условия электрокристаллизации, при которых образуются мелкозернистые осадки, кристаллическая шероховатость обычно не играет существенной роли в формировании микрорельефа поверхности электроосажденных металлов и сплавов. Однако при нанесении гальванических покрытий на поверхность высокого класса чистоты (на зеркально блестящую основу) кристаллическая шероховатость определяет профиль поверхности электролитического осадка. [c.14]

    Основным недостатком СЦ-аккумулятора является малый ресурс в циклах, что связано прежде всего с появлением точечных коротких замыканий со стороны отрицательного электрода в процессе циклирования. Цинк при электрокристаллизации из цинкатного электролита склонен к дендритообразова-нию. Эта тенденция усиливается с повышением скорости электрохимической реакции. Поэтому дендриты появляются чаще всего к концу заряда в зонах краевого эффекта, т. е. по краям электродов. Особенно недопустимым с этой точки зрения является перезаряд цинкового электрода. [c.233]

    ШИ появляются мгновенно (мгновенное зародышеобразование) б) к мало, так что N .kNat (прогрессирующее зародышеобразование). Соотношения для зависимости i от I были получены для разных форм зародышей и для различных механизмов их роста. Для зародышей цилиндрической формы и постоянной высоты (двумерный рост) в отсутствие взаимодействия при прогрессирующем и 1=кз( при мгновенном зародышеобразовании. Если такие зародыши при разрастании перекрываются, то ток должен проходить через максимум, так как, начиная с некоторого момента, поверхность электрокристаллизации сокращается. Математический анализ показывает, что при этом г = [c.322]

    Итак, возможны два механизма распространения ступеней роста а) адатомы входят непосредственно в места роста б) адатомы входят в места роста после поверхностной диффузии. Оценка вклада каждого из этих механизмов в процесс электрокристаллизации представляет сложную экспериментальную задачу. Однозначный вывод о соотношении указанных механизмов был получен пока лишь для процесса элек- [c.326]


Смотреть страницы где упоминается термин Электрокристаллизация: [c.335]    [c.340]    [c.273]    [c.234]    [c.317]    [c.319]    [c.322]    [c.326]    [c.332]   
Смотреть главы в:

Технология электрохимической очистки воды -> Электрокристаллизация


Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.698 ]

Общая химия ( издание 3 ) (1979) -- [ c.362 ]

Теоретическая электрохимия (1965) -- [ c.247 ]

Теоретическая электрохимия Издание 2 (1969) -- [ c.426 ]

Курс теоретической электрохимии (1951) -- [ c.350 ]




ПОИСК







© 2025 chem21.info Реклама на сайте