Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дислокации поверхностные

    Поскольку JV представляет собой объем тела, растворяющийся с единицы поверхности за единицу времени, а коэффициент а = 1/и где V — активационный объем дислокаций при пла-. стическом течении, по существу численно может быть охарактеризован как максимально возможная динамическая плотность дислокаций (т. е. плотность их в момент течения), то выражение (211) формально можно интерпретировать следующим образом. Дополнительный поток дислокаций при хемомеханическом эффекте образуется в результате насыщения дислокациями поверхностного слоя до максимально возможной динамической плотности, а затем стравливания этого слоя со скоростью химического растворения. Насыщение дислокациями растворяющегося слоя возможно ввиду несравнимых величин скоростей размножения и движения дислокаций, с одной стороны, и растворения тела с другой стороны. Так, при обычных значениях скоростей коррозии стравливание одного моноатомного слоя занимает секунды и более секунды, а дислокационные процессы совершаются с околозвуковыми скоростями. Образование поверхностных источников дислокаций в процессе реализации хемомеханического эффекта приводит к быстрому насыщению поверхностного слоя дислокациями, что создает условия для множественного скольжения (в том числе поперечного скольжения дислокаций) и, следовательно, для разрушения ранее сформировавшихся плоских скоплений, т. е. для релаксации микронапряжений и разупрочнения. [c.126]


    При циклическом деформировании металла с малыми амплитудами в поверхностно-активной среде также возникает более высокая плотность дефектов, расположенных равномерно по объему образца, чем при испытании в воздухе. При высоких амплитудах деформации, вследствие высокой скорости накопления дислокаций, поверхностно-активная среда способствует более быстрому упрочнению поверхностных слоев металла. [c.16]

    Суммарные напряжен 1 5 (х) = р Р, х), действующие на дислокацию со стороны остальных дислокаций поверхностного натяжения и внешних полей, в начале разгрузки равны  [c.74]

    К местной относится язвенная или питтинговая коррозия. В местах скопления дислокаций поверхностные атомы обладают повышенной энергией. На этих участках скорость анодного процесса выше, чем на соседних. В связи с этим и на поверхности металла образуются углубления. Диаметр основания такого углубления (язвы) соизмерим с ее глубиной. [c.70]

    Кристаллическая поверхность твердого тела неоднородна. На ней всегда имеются микроскопические участки, занятые химически активными группами атомов и так называемые поверхностные активные центры, служащие центрами адсорбции. Одной из причин их появления может служить выход разных кристаллических плоскостей на поверхность. Роль такого центра может играть также поверхностный атом основной кристаллической решетки со свободной связью. Появление активных центров может быть связано с неустранимыми дефектами поверхности, например с местом выхода на поверхность дислокаций, где кристаллическая решетка сильно возмущена и где в результате этого возникают очень активные поверхностные атомы. Причиной неоднородности поверхности могут стать способ и характер предварительной ее обработки, приводящей к образованию на монокристаллах ступеней, уступов, широких террас и других подобных дефектов, а также микроскопические примеси постороннего вещества, загрязняющего поверхность. [c.181]

    При низких температурах эффективны механизмы, основанные на скольжении дислокаций, которое может облегчаться в присутствии поверхностно-активных сред. Теория адсорбционного пластифицирования [291] объяснила эти эффекты на основе представлений о снижении потенциального барьера, препятствующего выходу дислокаций на поверхность с образованием на поверхности ступеньки, и об облегчении начала работы приповерхностных источников дислокаций благодаря снижению свободной поверхностной энергии. Это дает возможность ориентировочно оценить те условия, в которых аналогичные эффекты могут иметь место в природе. Это та область режимов деформации, когда в наборе активационных энергий- преобладают компоненты, связанные с поверхностным барьером [255],. равным Ь а, где Ь — вектор Бюргерса и о — свободная поверхностная энергия минерала. В этом случае отношение скоростей деформации в присутствии активной среды и на воздухе равно [c.88]


    Но для большинства минералов поверхностный барьер мало отличается от энергии активации движения дислокации сквозь решетку, равной энергии активации образования перегиба на линии дислокации, если сопротивление оказывает главным образом сила Пайерлса. Например, для оливина обе величины близки к 200 кДж/моль. Поэтому не удивительно, что для ионных и ионно-ковалентных кристаллов, в которых сила Пайерлса велика, адсорбционное пластифицирование проявляется лишь при действии сред, обладающих достаточно большой поверхностной активностью. Так, вода, понижающая поверхностную энергию фторида лития на 30%, а хлорида натрия — на 75%, практически не влияет на движение дислокаций в первом случае, но вызывает ярко выраженный эффект (увеличе- [c.88]

    Поверхностный наклеп весьма эффективно повышает стойкость стали к сульфидному растрескиванию, что объясняется тем, что тонкий поверхностный слой с высокой плотностью дислокаций и высоким уровнем сжимающих напряжений является препятствием для проникновения водорода в объем металла. [c.29]

    Изменение образца при приготовлении. При уменьшении толщины препарата (шлифовки, полировки и т. п.) могут быть частично релаксированы дислокации, поэтому дислокационная структура тонких и толстых объектов часто бывает различной (в процессе приготовления пластинок из стали перемещается, например, до 20% дислокаций). Нагревание образца в процессе полировки часто приводит к определенным фазовым превращениям вещества в поверхностном слое (отжиг части точечных дефектов, образование гидридов в токе водорода и т. п.). Могут происходить различные изменения в пленке образца и при переносе ее из камеры предварительного приготовления в вакуумную систему, и при пребывании в условиях глубокого вакуума. [c.144]

    Для бездислокационных граней между стационарной скоростью распространения ступени роста и перенапряжением при небольших т] существует линейная зависимость [=kL , где Ь — длина растущей ступени. Для кристаллов с винтовой дислокацией была найдена линейная зависимость между током и г) , которая объясняется тем, что при спиральном росте общая длина L спирального фронта обратно пропорциональна расстоянию между последовательными витками спирали и, следовательно, пропорциональна перенапряжению. Зная эти зависимости, можно приготовить поверхности с точно известной плотностью ступеней роста. Согласно импедансным измерениям на таких поверхностях плотность тока обмена пропорциональна длине ступеней. Это означает, что осаждение адатомов на ступенях является более быстрым процессом, чем осаждение на кристаллической плоскости, а найденная плотность тока обмена, составляющая 600 А/см , характеризует обмен между адатомами в местах роста и ионами в растворе. С другой стороны, импедансные измерения на идеально гладких поверхностях позволили определить ток обмена адатомов на кристаллической плоскости с ионами раствора, который оказался равным всего 0,06 А/см . Таким образом, при электрокристаллизации серебра из концентрированных растворов осуществляется преимущественно механизм непосредственного вхождения адатомов в места роста, вклад же поверхностной диффузии даже при наивысшей плотности ступеней не превышает нескольких процентов. [c.327]

    Дальнейшее повышение частоты до 50... 100 МГц и даже единиц гигагерц позволяет решать такие задачи, как выявление очень мелких дефектов (50... 100 мкм), в том числе микропористости в металлах и керамике, исследование тонкой кристаллической структуры металлов, обнаружение неоднородностей в оптическом стекле с неотшлифованными (непрозрачными) поверхностями, контроль размеров и качества соединения элементов композиционных материалов, тонких многослойных конструкций, поиск дефектов в полупроводниковых элементах, исследование поведения дислокаций в кристаллах. Контролируемые материалы должны обладать малым затуханием ультразвука на соответствующей частоте или приходится контролировать только поверхностные слои объектов (1,..2мм). [c.266]

    При пластической деформации происходит выход дислокаций на поверхность, что связано с увеличением поверхности и требует дополнительной затраты энергии, пропорциональной поверхностному натяжению. [c.294]

    По природе и происхождению дефекты подразделяют на следующие типы точечные (нульмерные), линейные, или дислокации (одномерные), поверхностные (двухмерные) и объемные (трехмерные). [c.178]

    В решении главных задач физико-химической механики дисперсных систем — создании новых материалов с заданными свойствами и развитии методов направленного регулирования свойств дисперсий в технологических процессах центральной является проблема познания взаимосвязи устойчивости коагуляционных структур, закономерностей их формирования с дисперсностью и лиофильностью структурообразующего компонента. Особенно велика роль природы поверхности дисперсной фазы ири получении агрегативно устойчивых суспензий в органических средах, а также ири действии высоких температур, электролитов и других коагулирующих агентов. В таких случаях изменение дисперсности и природы поверхности твердой фазы увеличением или уменьшением числа несовершенств структуры и дислокаций, аморфизацией поверхностного слоя, заменой одних активных центров другими — важнейший фактор, который определяет и регулирует структурно-реологические характеристики пространственных коагуляционных структур и микроструктуры материалов, полученных на их основе. [c.79]


    В монокристалле такими концентраторами напряжения могут являться скопления дислокаций перед препятствием. Фактически действующие здесь напряжения возрастают настолько, что металл начинает разрушаться и возле препятствия образуется трещина (рис. 98). Эта зародышевая трещина становится опасной и начинает расти дальше — на все поперечное сечение образца только тогда, когда упругая энергия, накопленная в единице объема образца, превысит поверхностную энергию новой поверхности, или свежих стенок трещины. Иначе говоря, трещина длиной X будет опасной, неравновесной, если уровень [c.224]

    Изменение энергии, обусловленное поверхностными силами, учитывается двумя членами, один из которых связан с изменением поверхностной энергии, другой —с изменением энергии дислокаций. [c.263]

    Винтовые дислокации облегчают рост кристалла, давая возможность атомам садиться на поверхностную ступеньку. Дислокации влияют на раскалывание кристаллов и другие механические свойства. Наличие дислокаций и взаимодействия между ними объясняет наблюдаемое для некоторых кристаллов явление деформационного упрочения, которое состоит в том, что при увеличении приложенного напряжения пластическая деформация возрастает. [c.194]

    На размеры и форму образующихся кристаллов сильно влияют находящиеся в растворе примеси, особенно поверхностно-активных веществ. Некоторые из них специально вводят в качестве модификаторов для получения крупнокристаллических продуктов. Например, укрупнения кристаллов КС1 достигают добавкой в раствор малых количеств (10 —10" %) алифатических аминов, полифосфатов и др. Механизм этого явления изучен недостаточно. Предполагают, что введение добавок 1) увеличивает метастабильное пересыщение раствора и соответственна скорость роста кристаллов, не повышая скорости образования зародышей 2) уменьшает скорость появления зародышей, влияя на поверхностное натяжение и на энергию активации их образования 3) вследствие адсорбции на поверхности кристаллов увеличивает число дислокаций на ней, что ускоряет их рост и др. [c.250]

    Области применения металлографических методов. Металлографический анализ —один из важнейших методов физико-химического исследования. Основные области его применения 1) определение количества фаз и последовательности их кристаллизации при построении диаграмм состояния 2) контроль качества полученного слитка (наличие двойников, поверхностных включений второй фазы и т. д.) при выращивании монокристаллов 3) определение платности дислокаций, дефектов упаковки и т. п. на монокристаллических материалах. [c.47]

    Энергия активации поверхностной реакции зависит от структуры и состояния поверхности материала. На грубо обработанных шероховатых поверхностях травление протекает с меньшей энергией активации. Посторонние атомы, дислокации и другие дефекты структуры могут повышать или понижать энергию активации растворения. [c.102]

    Линия дислокации находится в состоянии высокого поверхностного напряжения и химический потенциал настолько велик, что вещество может выходить из дислокации, оставляя за собой полость. Дислокации чаще всего выступают как центры адсорбции. [c.126]

    При пластической деформации происходит выход дислокации на поверхность, что связано с увеличением поверхности и требует дополнительной затраты энергии, пропорциональной поверхностному натяжению. П. А. Ребиндер показал, что и пластическая деформация и разрушение могут быть существенно облегчены с помощью адсорбирующихся добавок (адсорбционное облегчение деформации). [c.384]

    В ТОНКИХ стеклянных волокнах высокая прочность достигается, по-видимому, благодаря удалению наиболее опасных поверхностных дефектов (трещин Гриффитса). В нитевидных кристаллах (см. гл. X) дислокаций мало и расположены они, как правило, вдоль оси уса, что препятствует размножению дислокаций, необходимому для появления заметной пластической деформации. Тя нутая проволока из высокоуглеродистой стали, наоборот, имеет большую плотность дислокаций дислокации, межфазные границы и другие дефекты расположены так густо, ч го почти полностью исключают пластическую деформацию. [c.214]

    Следовательно, деформирование кристалла не может быть в отличие от отжига опонтанным (процессом. При отжиге температуру повышают только для ускорения процесса. Из-за сложности оценки W трудно провести количественный расчет равновесия для процессов деформационного отжига. Составлены оценки упругой энергии вокруг одиночной дислокации, поверхностной энергии границ зерен [2], но весьма нелегко рассчитать энергетику сложной системы несовершенств в деформированном поликристаллическом материале. [c.56]

    До сих пор еще пе ясно, какой из вариантов является наиболее вероятным все же предпочтение, по-видимому, следует отдать двум иоследним. Существование адатомов (или адионов) было доказано рядом независимых методов, которые позволили также определить их концентрацию. Поверхностная диффузия частиц должна играть наибольшую роль в тех случаях, когда участки роста (дислокации, двухмерные зародыши) занимают лишь незначительную долю поверхности. Тогда, вследствие большого расстояния Ха, на которое должны переместиться адсорбированные частицы до места их включения в решетку, градиент концентрации Асив.с1х,1, а следовательно, и скорость поверхностной диффузии будут малы. Поверхностная диффузия может оказаться замедленной стадией при электроосаж-деыии металлов. Эти условия реализуются на бездефектных гранях (или гранях с малым числом дефектов) и в области низких поляризаций (малые илотности тока), когда число зародышей невелико. [c.342]

    ГЧ УЛьпые кристаллы. Кристаллы, состоящие из соверщенно оди-нaк JBыx элементарных ячеек, называются идеальными. Образующиеся в реальных условиях кристаллы могут несколько отличаться от кристаллов идеальных. Реальные кристаллы построены из некоторого числа блоков правильного кристаллического строения, расположенных приблизительно параллельно друг другу, ио все же несколько дезориентированных. Это явление называется мозаичностью структуры кристаллов, которая ведет к возникновению дислокаций, т. е. линейных, а также поверхностных и объемных дефектов структуры, образующихся 1з процессе роста кристаллов или же при пластической деформации. Помимо дислокаций в реальных кристаллах образуются также участки неупорядоченности, локализованные обычно около отдельных узлов решетки, — так называемые плоские дефекты. [c.72]

    Считают, что коррозия ускоряет пластическую деформацию напряженного металла путем образования поверхностных решеточных вакансий, в частности сдвоенных вакансий (дивакансий). Последние при комнатной температуре диффундируют внутрь металлической решетки сквозь зерна и границы зерен металла на порядок быстрее, чем моновакансии . Появление дивакансий облегчает пластическую деформацию вдоль плоскостей скольжения вследствие процесса переползания дислокаций. Чем выше скорость коррозии, тем больше доступность дивакансий и, следовательно, тем более выражено образование выступов и впадин, включающихся в процесс развития усталости. Существование минимальной скорости коррозии, необходимой для развития коррозионной усталости, позволяет предположить, что с уменьшением скорости коррозии снижается и скорость образования дивакансий. Концентрация див.акансий падает, и прекращается их влияние на движение плоскостей скольжения возможно такое падение концентрации, при котором дислокации аннигилируют или заполняются атомами металла. [c.163]

    Под поверхностным слоем детали понимается как сама поверхность, полученная в результате обработки, так и слой материала, непосредственно прилегающий к ней. Характерная особенность этого слоя состоит в отличии его свойств от свойств основного материала. Поверхностный слой детали формируется под воздействием технологических факторов, внешней среды и имеет комплекс свойств, которые можно условно разделить на три группы геометрические (шероховатость, волнистость) физикомеханические и химические. К геометрическим параметрам поверхностного слоя относят шероховатость (Яа Кг), волнистость и направление неровностей. К физико-механическим параметрам поверхностного слоя относят дефекты поверхности (задиры, царапины, трепщны, раковины), дефекты материала (деформация отдельных зерен слоев), структурнофазовый состав, субструктуру (размеры блоков, фрагментов, угол раз-ориентировки блоков), кристаллическую структуру (тип и параметр решетки, текстура, плотность дислокаций, концентрация вакансий, остаточные микронапряжения). К химическим свойствам поверхностного слоя относят его химический состав, валентность, ионизационный потенциал и др. [c.16]

    Намного легче осуществляются гетерогенное зародышеобразование и кристаллизация. Скорость образования центров кристаллизации новой фазы ускоряется в присутствии поверхностей раздела, существовавших до образования центров новой фазы. Такими поверхностями раздела могут служить стенки сосуда, инородные включения в виде зерен и коллоидных частиц, дислокации и т. д. Наличие поверхностей раздела повышает поверхностную энергию системы, а это способствует снижению АРкр, т. е. величины энергии гомогенного зародышеобразования за счет уменьшения энергии поверхности раздела Д/ . [c.221]

    Р. Каишев, Е. Будевский и сотрудники показали, что уравнения (УИ1.101) и (УП1.Ю2) выполняются только при особых условиях проведения электрокристаллизации (монокристаллические бездислока-ционные грани, электролиз с использованием импульсов тока или потенциала определенной длительности и формы). На реальных элект-)одах стадия образования зародышей не является лимитирующей. 3 зависимости от условий скорость электроосаждения определяется диффузией ионов к поверхности электрода, стадией разряда ионов, поверхностной диффузией разрядившегося иона (такой ион называют адионом или адатомом) или стадией встраивания адиона в кристаллическую решетку. Особую роль в процессах электрокристаллизации играет наличие винтовых дислокаций, ступеней атомной высоты и макроступеней. Часто при электрокристаллизации используют не простые, а комплексные элактролиты. В таких условиях могут оказаться медленными химические стадии диссоциации комплексных ионов, предшествующие процессу осаждения металла. [c.208]

    Другая отличительная особенность процессов адсорбции на металлах группы платины по сравнению с ртутным электродом связана уже не с механизмом адсорбции, а с характером распределения адсорбированных частиц по энергиям связи. Если на ртути идеально соблюдается энергетическая равноценность адсорбционных мест, то в случае твердых электродов нельзя не принимать во внимание большую вероятность нарушения такой однородности. Прежде всего могут отличаться по энергиям адсорбции различные грани. Значения энергий адсорбции на межкристал-литных границах, в узких шелях, микропорах, в местах включений посторонних частиц в поверхностный слой могут быть сун1е-ствеино иными по сравнению со значениями энергий адсорбции на чистых гранях. Особыми местами являются также вершины и ребра кристаллитов, выходы дислокаций и другие дефекты поверхности. Следует учитывать, что часто могут иметь место не [c.87]

    Топохимические реакции начинаются обычно не на всей поверхности исходного твердого вещества, а на отдельных ее участках — зародышах ядер кристаллизации новой фазы (продукта), которые образуются на поверхности кристалла. Ядра кристаллизации появляются раньше всего в областях дефектов кристаллической решетки. В простейшем случае это могут быть, например, выходы дислокаций на поверхности, вакансии, расположение атомов (ионов) в междоузлиях и т. п. Таким точкам, или элементам кристаллической решетки, свойственна повышенная энергия Гиббса и, следовательно, более высокая реакционная способность. Зародыши ядер называют также потенциальными центрами образования ядер. На рис. 167 представлена схема распространения реакции в кристалле. Около поверхностных зародышей начинается рост сферических ядер. начальные центрызарождреакции. [c.409]

    Химическая полировка кремния. Травлению для выявления дислокаций должна обязательно предшествовать химическая полировка, в процессе которой удаляется поверхностный слой и получается зеркальная поверхность, на фоне которой четко выявляется дислокационная сгруктура монокристалла кремния. Полирование поверхности можно проводить в указанных травителях в течение 40—50 с. Можно использовать боле е мягкий травитель с добавлением уксусной кислоты состава HNOз HF СН3СООН = 3 2 2. Травление проводить Е тёчённе 2—3 мин. Образцы после травления тщательно промывают дистиллированной водой и высушивают. [c.107]

    Поверхности реальных кристаллов далеки от совершенства. На поверхности нодложки могут быть скопления дислокаций, механические повреждения. Поверхностные атомы химически весьма активны, и вследствие этого свободная поверхность быстро покрывается адсорбированным или хемосорбированным слоем толщиной в несколько атомных диаметров Все эти несовершенства вызывают образование большого числа центров кристаллизации и способствуют возникновению дефектов роста в пленке. [c.140]

    Таким образом, наличие шероховатостей, выступов и впадин, активных граней, точечных де([)ектов, дислокаций образует весьма сложную микротопографическую картину, не говоря уже о влиянии химической природы и предыстории образца. Поэтому однозначного ответа на вопросы о локализации адсорбционных центров, их плотности и поверхностной энергии быть не может без привязки к конкретной структуре и составу поверхности. [c.126]

    Граница зерен однокомпонентного поликристаллнческого твердого тела является специфической поверхностью раздела двух объемов одинакового состава, находящихся в одинаковом (твердом) фазовом состоянии. Структура границ зерен и их удельная свободная поверхностная энергия Огз во многом определяются степенью разориен-тировки зерен относительно друг друга. При слабой взаимной разори-ентации соседних участков кристаллов (их обычно называют в этом случае блоками) величина Огз мала и приблизительно линейно возрастает с увеличением угла разориептировки. На рис. I—11, а изображен Простейший вид подобной малоугловой границы блоков края неполных атомных плоскостей могут рассматриваться как особые линейные дефекты структуры твердого тела, называемые краевыми дислокациями (см. также с. 339). [c.29]


Смотреть страницы где упоминается термин Дислокации поверхностные: [c.821]    [c.340]    [c.27]    [c.314]    [c.102]    [c.247]    [c.112]    [c.34]    [c.200]    [c.306]   
Обратимая пластичность кристаллов (1991) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Дислокация



© 2025 chem21.info Реклама на сайте