Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упрочнение выделениями

    Одно время полагали, что сплавы, упрочненные выделениями, такие как Рене 41 и Инконель 718, не склонны к водородному охрупчиванию, так как даже сильное катодное наводороживание вызывало очень малые потери пластичности [278, 282]. Однако растрескивание происходит несмотря на малые значения этих потерь [283]. Это позволяет, по-видимому, объяснить сочетание хорошей стойкости сплава Инконель 718 к КР [241, 269] с очень слабой стойкостью к охрупчиванию в водороде, предположив, что в этом случае одновременно протекают процессы растворения и водородного охрупчивания. Потенциал катодного наводороживания может находиться в области минимального проникновения, как показано на рис. 28, либо поверхностные условия могут препятствовать поглощению значительного количества водорода. Последний случай соответствует малой эффективной подвижности водорода сплав Инконель 718 не охрупчивается в водороде при давлении ниже 0,7 Па [284]. Кроме того, если скорости репассивации у вершины трещины [99] препятствуют ее заострению в результате растворения металла, то протекание КР становится невозможным. [c.115]


    Следует отметить также, что сплавы, упрочненные выделениями, относятся к числу типичных структур, в которых происходит разрезание выделений дислокациями. Это явление хорошо изучено [123, 126, 285]. Как и в случае сплавов на основе Ре, содержащих у -выделения, возникающее планарное скольжение вполне может коррелировать с плохой стойкостью к водородному охрупчиванию [124, 125]. Степень несоответствия решеток матрицы и 7 -фазы в рассматриваемых сплавах бывает различной [274, 276, 285], а несоответствие матрицы и у" может быть большим [277, 290]. Таким образом, в никелевых сплавах с достаточно большим несоответствием решеток матрицы и выделений может существовать зависимость типа показанной на рис. 22 [126], при условии отсутствия нежелательных зернограничных слоев т] пли Ь. продолжение работ, основанных на таких представлениях, может дать ценные результаты. [c.117]

    Известные предположения о наиболее вероятном механизме выделения водорода на разных металлах можно высказать на основании общих положений электрохимической кинетики в применении к данной электродной реакции. Так, было предположено, что при увеличении теплоты адсорбции водородных атомов на катодном металле вероятность замедленного разряда падает, а замедленной рекомбинации растет. Это связано с различным влиянием изменения теплоты адсорбции водородных атомов на скорость разряда и на скорость рекомбинации. Как следует из потенциальных кривых (рис. 19.5), энергия активации разряда уменьшается с ростом теплоты адсорбции. Энергия активации процесса рекомбинации, напротив, увеличивается с упрочнением связи между металлом и поверхностными атомами водорода, количественной характеристикой которой является теплота адсорбции. В то же время увеличение [c.411]

    Выделение тонких частиц окисла в металлической фазе при внутреннем окислении приводит к поверхностному упрочнению сплава, затрудняет рекристаллизацию и рост кристаллов металла. [c.107]

    Спекание электродных заготовок, самообжигающихся анодов, заготовок для производства обожженных анодов во многом аналогично процессу замедленного коксования тяжелых нефтяных остатков в необогреваемых камерах. Спекание, так же как и коксование, происходит по радикальному механизму, но с иными кинетическими закономерностями. В результате сложных физико-химических изменений компонентов связующего, происходящих при высокотемпературном нагреве, между зернами наполнителя образуются химические связи, приводящие к упрочнению структуры заготовок. При интенсивном обжиге летучие, выделяющиеся в виде паров и газов, искажают структурный скелет заготовок н ослабляют их механическую прочность. Постепенный нагрев заготовок в особо ответственных моментах (500—800 °С) способствует выделению летучих в виде низкомолекулярных газов и большему выходу кокса, образующегося при спекании связующего, что в конечном счете приводит к меньшему искажению структурного скелета заготовок. [c.95]


    Количество водорода, накапливаемое во время хранения консервов, определяется не только толщиной оловянного покрытия, температурой, химической природой контактирующих пищевых продуктов, но чаще всего составом и структурой стальной основы. Скорость выделения водорода увеличивается при использовании сталей, подвергнутых холодной обработке (см. разд. 7.1), которая является стандартной процедурой для упрочнения стенок тары. Последующая, случайная или умышленная, низкотемпературная термообработка может приводить к увеличению или уменьшению скорости выделения водорода (см. рис. 7.1). Высокое содержание фосфора и серы делает сталь особенно чувствительной к воздействию кислот, в то время как несколько десятых процента меди в присутствии этих элементов могут способствовать уменьшению коррозии. Однако влияние меди не всегда предсказуемо, так как в любых пищевых продуктах присутствуют органические деполяризаторы и ингибиторы, часть которых может выполнять свои функции только при отсутствии в стали примесей меди. [c.240]

    Несмотря на небольшое упрочнение, все же распад молекул многосернистых водородов, который протекает с выделением избытка серы, энергетически более выгоден при возрастании длин исходных серных цепочек  [c.221]

    Жаропрочность стали и сплавов повышают те легирующие элементы, которые вызывают старение и упрочнение вследствие выделения микроскопических частиц, затрудняющих пластическую деформацию при высокой температуре. [c.78]

    Поскольку высокоэнергетические границы зерен являются местами преимущественного зародышеобразования при внутреннем окислении и образовании выделений, то можно было бы ожидать, что на границах зерен будет выделяться большая часть образующихся внутри сплава оксидов, карбидов, нитридов и т. д. Это в свою очередь должно приводить к упрочнению и повышению стойкости против проскальзывания по границам зерен [5, 18—21, 140]. Проведенные экспериментальные исследования подтвердили эту гипотезу [32, 33], но вместе с тем еще раз выявили, что улучшение характеристик ползучести достигается ценой понижения пластичности разрушения. Зернограничные выделения могут ускорять (и действительно ускоряют) образование вредных полостей на границах зерен [33, 55, 164, 165] и последующее зарождение трещин, что в конечном счете приводит к разрушению [140]. [c.34]

    Еще одним интересным моментом является отрицательное влияние равновесных интерметаллических соединений на стойкость сталей, титановых, никелевых сплавов и в некоторых случаях нержавеющих сталей к водородному охрупчиванию. В алюминиевых сплавах интерметаллидные включения играют косвенную положительную роль, но могут оказывать и прямое отрицательное воздействие. Поскольку выделение этих соединений может отрицательно сказываться также на вязкости и других свойствах, то его предупреждение является, как правило, полезным, за исключением тех случаев, когда присутствие интерметаллидов необходимо для упрочнения материала. [c.120]

    Хотя уравнение (1) удовлетворительно описывает поведение широкого круга металлов и сплавов в режиме установившейся ползучести, сравнительно недавно было найдено [13], что в высокостойких к ползучести (крипоустойчивых) упрочненных выделениями сплавах (суперсплавы и дисперсноупрочненные сплавы) необходимо учитывать также наличие внутренних напряжений Сть препятствующих образованию и движению дислокаций  [c.11]

    В тех средах, которые рассматриваются в данной главе, сплавы на основе никеля исследовались не так интенсивно, как некоторые из уже рассмотренных выше систем сплавов. Поэтому обобщение имеющихся данных в этой области будет сравнительно кратким. Составы обсуждаемых ниже сплавов представлены в табл. 7. Среди никелевых сплавов можно выделить три больших основных класса (причем во всех трех случаях матрица имеет г. ц. к. структуру) 1) однофазные сплавы, такие как Ni—30 u, Ni—20 Сг и другие 2) сплавы, упрочненные выделениями, в основном представленные лсаропрочными суперсплавами, состаренными с целью выделения v -фазы 3) дисперсно-упрочненные сплавы, в которых упрочняющая фаза не выделяется из твердого раствора, а вводится в сплав каким-либо иным способом. Прежде чем обсуждать свойства каждой группы сплавов, важно рассмотреть поведение номинально чистого никеля. [c.109]

    Введение 30% и более Си в N1 слабо влияет на потери пластичности и склонность к межкристаллитному разрушению при наводороживании по сравнению с чистым N1 [108]. Поэтому, как и следовало ожидать, сплавы на основе бинарной системы 70 Ni—30 Си (известные под торговым названием Монель) подвержены межкристаллитному разрушению как при КР [241], так и вследствие водородного охрупчивания [253]. Упрочненный выделениями сплав Монель К-500, хотя и не является однофазным, также разрушается при испытаниях на КР [241], в условиях катодного наводоро- [c.110]

    Стали аустенитно-мартенситного класса относятся к высокопрочным дисперсионно-твердеющим сталям. Упрочнение этих сталей достигается в результате мартенситного превращения обработкой при низких температурах или холодной деформацией с последующим старением при температурах 350—550°С, когда происходит выделение избыточных фаз. Коррозионная стойкость сталей этого класса несколько ниже стали 1Х18Н9Т, однако выше, чем у стали 2X13, при одинаковых механических свойствах. [c.42]


    При деструктивных процессах высокомолекулярных соединений в результате упрочнения и укорачивания межмолекулярных связей плотность нефтепродуктов, в том числе и нефтяного кокса, непрерывно увеличивается. Удаление легких продуктов может сунгсствен-но сказаться на структуре твердых продуктов термодеструкции и на их свойствах. При формировании и дальнейшем совершенствовании структуры нефтяных коксов выделение летучих веществ приводит к образованию сетки пор, развитых тем в большей степени, чем менее пластичная была среда, через которую проходили выде-ляЕощиеся продукты, так как следы прохождения летучих в менее пластичной среде исчезают медленно. Определяют 4 вида плотности, различающихся между собой степенью доступности адсорбатов к порам рентгенографическая рент пикнометрическая пик, кажущаяся к и насыпная н- [c.154]

    Создание гальванической пары из мартенситной нержавеющей стали и электроотрицз[тельного металла также может приводить к разрушениям в результате выделения водорода на катодной поверхности стали. Подобные явления наблюдали при лабораторных испытаниях [52]. Как указывалось в разд. 7.4, на практике отмечали случаи разрушения судовых винтов из мартенситной нержавеющей стали. Эти винты самопроизвольно растрескивались вскоре после того, как их приводили в контакт с алюминием в условиях прибрежной атмосферы. Аналогичным образом вели себя винты из упрочненной мартенситной нержавеющей стали, находившиеся в контакте со стальным корпусом корабля они разрушались вскоре после начала эксплуатации. Некоторые марки аустенитных нержавеющих сталей 18-8, подвергнутые [c.319]

    Обобщая приведенные выше результаты, можно прийти к выводу, что при воздействии на высокоориентированные волокна циклической нагрузки, которая всегда остается положительной по знаку, единственным механизмом усталости является гистерезисное выделение тепла. Однако если в цепях и фибриллах возможна релаксация напряжения, деградация вместо эффекта деформационного упрочнения и переориентация цепей и фибрилл, то преимущественным фактором будет начало роста и распространение трещин. Таким образом, усталостный механизм, описанный Банселлом и Хирлем [77, 79], проявляется в усилении межфибриллярного проскальзывания и росте трещин почти параллельно направлению нагружения. Данный вопрос будет рассмотрен в следующем разделе. Характерные усталостные механизмы также четко проявляются в неориентированных полимерах. Они будут рассмотрены в разд. 8.2.3 данной главы и в следующей главе. [c.263]

    При длительном хранении гелей и студней дисперсные частицы могут уплотняться за счет самопроизвольного выделения из полостей пространственного каркаса дисперсионной среды, что в конечном итоге приводит к уменьшению объема дисперсной фазы, при неизменном общем объеме системы, и к расслоению системы. Такие превращения дисперсных коллоидных систем называются синерезисом. Синерезис объясняется увеличением со временем числа контактов частиц дисперсной фазы и их переориентацией, приводящей к наиболее плотной упаковке, упорядочению и упрочнению структуры. Если в системе на наблюдается химических превращений, то синерезис является обратимым процессом, находящимся в прямой зависимости от концентрации, температуры и pH раствора, присутствия в растворе десольватирую-щих добавок. Гибкость и подвижность элементов структурного каркаса также способствуют синерезису. Процессом, обратным синерезису, является набухание. [c.31]

    Распад пересыщенных твердых растворов и связанные с ним процессы старения металлов и сплавов имеют огромное техническое значение. Это обусловлено тем, что часто выделяющаяся при распаде раствора избыточная твердая фаза в мелкодисперсиом состоянии упрочняет металл. Примером такого упрочнения является выделение интерметаллического соединения NigAl в жаропрочных сплавах типа нимоник. В широко применяемом в авиации сплаве — дюралюминии — при старении выделяются мелкие кристаллики uAlg. Кинетика распада твердых металлических растворов определяется (в зависимости от природы сплава) различными факторами. Общими чертами таких процессов, как и в рассматриваемых выше случаях, являются образование и рост зародышей новой фазы. Обычно при низких температурах скорость процесса определяется скоростью образования зародышей новой фазы, а при высоких — ростом зародышей путем диффузии. [c.389]

    Ранее уже рассматривалось образование комплексного иона NHJ. Оно сопровождается выделением / 206 ккал. Значит, превращение NH3 в NHI связано с упрочнением связей N—Н. Выделяющаяся при этом энергия компенсирует энергетические затраты на разрыв связи ri—С1 с образованием протона и иона С1 . Из-за электростатического взаимодействия NH4 и С1 возникает ионное соединение NH4 I. [c.107]

    Постепенно, спустя час-два от затворения СдЗ водой, образуется вторичный метастабильный, с большей удельной поверхностью гидросиликат. Коагуляционная структура претерпевает некоторые изменения частично ликвидируются успевшие образоваться ранее старые контакты, а затем возникают новые. Таких контактов становится несравненно больше вследствие увеличения удельной поверхности гидросиликата и выделения кристалликов Са (0Н)2. Однако структура носит коагуляционный характер и лишь с началом развития явлений конденсации и лавинообразного ускорения гидратации начинается резкое упрочнение. Принимая за основу взгляды Кондо и Даймона 1 2301, можно объяснить некоторый рост прочности все еще коагуляционной структуры образованием большого числа [c.86]

    Отметим, что упрочнение выделяющимися фазами широко используется и в сплавах немартенситного типа. Для этого сплавы нагревают выше температуры, при которой фаза полностью переходит в раствор, а затем быстро охлаждают до более низкой температуры, где раствор становится пересыщенным, и производят отжиг, при котором выделяется упрочняющая фаза. Например, применяемый в авиации дюралюминий упрочняют добавками меди, которая образует мелкодисперсные выделения СиА12- [c.284]

    Подобные процессы выделения избыточных фаз используют и для упрочнения сплавов цветных металлов. Ил-пример, широко распространены дуралюмины — сплавы алюминия, в которых упрочняющими фазами являются соединения СиА12 и А12СиМд. [c.158]

    Легирующие элементы должны обеспечивать при кристаллиза-дии выделение тугоплавких химических соединений (карбидов, боридов или нитридов), которые наряду с высокой твердостью и из-1НОсостойкостью должны обладать малой склонностью к коагуля-щии при отпуске сталей и достаточной растворимостью в аустените, что прежде всего должно обеспечить упрочнение основной металлической составляющей сплава. [c.102]

    Повышение прочности молибдена объясняется поверхностным науглероживанием (молибден — более активный карбидообразователь, чем железо, так как расположен в периодической системе элементов левее железа имеет менее достроенную электронную -оболочку [91, 92]), образованием карбидов молибдена и их выделением при охлаждении в дисперсном виде (дисперсионное твердение). Эти процессы, приводящие к упрочнению молибдена, и обусловливают изменение характера разрушения — оно происходит не по молибдену, а по сварному шву. [c.99]

    Влияние деформации на катодную поляризационную кривую выделения водорода для стали 1Х18Н9Т аналогично отмеченному выше для стали 20 деформация на стадии деформационного упрочнения ускоряет катодную реакцию (на стадии динамического возврата наблюдалось ослабление этого влияния, как и в случае анодной поляризации). Объясняется это, по-видимому, зависимостью скорости разряда ионов водорода и рекомбинации адсорбированных атомов от работы выхода электрона и адсорбционных свойств поверхности металла в связи с влиянием деформации электрода на эти свойства. Однако возможно, что наблюдаемое изменение катодной поляризации связано с пространственным перераспределением анодных и катодных реакций вследствие стремления к локализации анодного растворения пластически деформированного электрода, как это рассмотрено в гл. IV. [c.86]

    Таким образом, присутствие углерода и азота в стали способствует деформационному упрочнению и тем самым повышает химический потенциал дислокаций и атомов металла, т. е. создает необходимые условия для механохимического растворения. Кроме того, адсорбция атомов углерода и азота на полигональных субграницах в некоторой мере способствует также увеличению химической активности. Этим, в частности, обусловлено некоторое увеличение [105, 106] скорости коррозии металла, прошедшего низкотемпературный отпуск, по сравнению с неотпущенным полигонизация приводит к увеличению общей протяженности субграниц с сегрегированными на них атомами примеси (процессы диффузии примесей к субграницам облегчаются нагревом), которые повышают химическую активность этих границ. Однако следует иметь в виду, что сегрегация углерода и азота на субграницах повышает скорость коррозии в кислых растворах вследствие снижения перенапряжения водорода на выделениях [107], а не вследствие облегчения анодной реакции. Последняя замедляется из-за понижения энергии, связанной с дислокациями, адсорбировавшими примеси старые дислокации травятся труднее, чем свежие . [c.116]

    Такие поверхностные барьеры на пути выходящих дислокаций могут иметь различную природу — окисныеи солевые пленки, поверхностные упрочненные слои, вакансионные комплексы, выделения и др. Скорость прохождения дислокаций сквозь более или менее прозрачные барьеры и размеры заторможенных подповерхностных дислокационных скоплений зависят от условий деформирования — скорости, температуры и др. Поэтому действие таких барьеров сказывается на характере стадий легкого скольжения и деформационного упрочнения, а также на скорости ползучести, тогда как непрозрачные барьеры (например, толстые и прочные поверхностные пленки) оказывают влияние на величину критического скалывающего напряжения. [c.144]

    Сталь Ст. Б подвергалась следующей обработке аустени-зация при температуре ИОО С в течение 1 ч подстуживание до температуры деформации 900°С пластическая деформация растяжением на 6% немедленная закалка с температуры деформации в воде отпуск при температуре 500°С. В этом случае упрочнение связано с измельчением аустенита вследствие образования дефектов кристаллической решетки больщой плотности. При этом имеет место измельчение мартенситных пластин, образование тонкой структуры, направленная ориентация кристаллов мартенсита [72]. При последующем отпуске упрочнение является следствием дисперсионного твердения и изменения характера выделений карбидов. [c.48]

    Справедливость второго предположения (о том, что воздушная среда может усиливать скольжение по границам зерен) гюдтвер-ждается сравнительным исследованием ползучести суперсплава на никелевой основе, упрочненного за счет высокого объемного содержания фазы у на воздухе и в вакууме при 760 °С [172]. Размеры зерна и образца изменялись в этом случае независимым образом, В исследованной системе, где границы зерен практически не содержали упрочняющих карбидов, наблюдалось усиление ползучести на воздухе. Как и следовало ожидать, образцы с более крупным зерном (275 мкм) оказались более стойкими к ползучести на воздухе, чем мелкозернистые (100 мкм) образцы. Напротив, при испытаниях в вакууме скорость ползучести практическп не зависела от размера зерна. Это согласуется с представлением об усилении скольжения по границам зерен, вызванном проникновением воздуха. Последнее подтверждается также наблюдениями сдвига границ зерен, согласно которым вклад проскальзывания по границам зерен в полную величину деформации иа воздухе больше, чем в вакууме. Интересно, что для образцов того же сплава, состаренных с целью образования выделений карбидов по границам зерен, усиление ползучести на воздухе уже не наблюдалось напротив, на воздухе сплав упрочняется. Эти результаты можно объяснить, основываясь на представлении об упрочняющем влиянии поверхностной окалины, которое должно быть эффективным, [c.39]

    Заманчивое направление разработки дисперсионно-упрочненных сплавов связано с попыткой повысить жаропрочность мате-Лзиала путем формирования 7 -выделений в сплаве, упрочненном дисперсией [291, 294]. Один из таких сплавов на основе системы [c.117]

    Слитки промышленных сплавов гомогенизируются в однородной области (см. рис. 77) существования фазы а. Быстрое охлаждение из области существования фазы а приводит к фиксации пересыщенного твердого раствора. При этом можно ожидать, что существенное упрочнение при распаде твердого раствора должно быть возможным. Однако этого не наблюдается для состава обычных промышленных сплавов системы Л1 — Mg. Низкое упрочнение во время распада твердого раствора объясняется тем, что при этом отсутствуют зоны ГП. Во время отжига или при нагревах в двухфазной области пересыщенный твердый раствор распадается и происходит выделение переходной (промежуточной) фазы р (на плоскостях 100 и 120 ) и равновесной фазы p(Mg5Al8) [97, 98]. Обычно эти выделения зарождаются гетерогенно по границам зерен и на дислокациях, поэтому они не распределены достаточно равномерно и тонко, чтобы давать значительный упрочняющий эффект. [c.223]

    Один из методов формирования структуры с высоким сопротивлением КР сплавов системы А1 — М , содержащих 4—8 % Mg, сводится к следующему [101]. После гомогенизации в области температур существования твердого раствора а (427—566°С) (см. рис. 77) сплавы подвергаются горячей прокатке и отжигу в интервале температур 316—427 °С, чтобы удалить влияние деформационного упрочнения. После охлаждения пересыщенный твердый раствор обрабатывается вхолодную при температуре ниже 260 °С с нагартовкой не менее 20 %. Этот холоднодеформиро-ванный (нагартованный) металл подвергается затем термической обработке для получения равномерного распределения выделений Р-фазы с целью повышения сопротивления КР. Такая обработка состоит в нагревании до температуры между 204 и 274 °С (линия (1в на рис. 77) в течение периода от 2 до 24 ч. Положение линии с1е на рцс. 77 показывает, что сплав с такой микроструктурой [c.227]

    При этом большинство легируюш,их добавок переходит в твердый раствор г. ц. к., как это видно на рис. 85. В результате быстрого охлаждения до комнатной температуры может быть получен твердый раствор, пересыщенный вакансиями, медью и другими легирующими добавками. Во время старения ири температурах от комнатной до температуры, соответствующей линии предельного растворения (см. рис. 85), пересыщенной твердый раствор распадается. В определенных условиях это может приводить к значительному упрочнению сплава. Распределение медн в сплаве оказывает также определяющее влияние на сопротивление межкристаллитной коррозии и КР- Термодинамически устойчивый конечный продукт распада пересыщенного твердого раствора А1 — Си представляет собой двухфазную структуру, состоящую из насыщенного твердого раствора а (г. ц. к.) и равновесной фазы 9, имеющей тетрагональную кристаллическую решетку и близкой по составу соединению СиАЬ. Из-за различия кристаллических решеток равновесная фаза 0 некогерентна с твердым раствором г. ц. к. Высокая межфазная энергия поверхности раздела фаз (>1000 эрг/см ) [119] приводит к высокой энергии активации для зарождения фазы 0. Поэтому образованию равновесной фазы может предшествовать ряд превращений метастабильных фаз, энергия активации которых при зарождении ниже. Последовательность образования выделений достаточно полно была изучена и может быть представлена в виде следующего ряда [97, 119, 120]  [c.235]

    Для того чтобы обеспечить высокопрочные свариваемые сплавы высокой прочностью при криогенных температурах, был разработан сплав 2021 [124]. Это сложный сплав, в котором строго контролируется содержание И легирующих элементов. Так же как в сплаве 2219, в сплаве 2021 основное упрочнение обеспечивается последовательностью превращений фазы А1—Си. Однако зарождение упрочняющей фазы во время старения при повышенных температурах стимулируется в сплаве 2021 добавками кадмия и олова [128]. Получаемая в результате прочность несколько выше, чем в сплаве 2219. Добавка марганца в сплаве 2021 дает дополнительное упрочнение и регулирует размер зерна в процессе формирования полуфабриката. Титан способствуег измельчению зерна (является модификатором) и добавляется в сплав вместе с цирконием и ванадием для уменьшения трещино-образования при сварке. В сплаве 2021 ограничивается содержание магния, чтобы исключить образование нерастворимой фазы М 25п, которая препятствует зарождению выделений [125]. [c.239]


Смотреть страницы где упоминается термин Упрочнение выделениями: [c.36]    [c.44]    [c.18]    [c.38]    [c.373]    [c.387]    [c.373]    [c.373]    [c.284]    [c.58]    [c.85]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.79 ]




ПОИСК







© 2025 chem21.info Реклама на сайте